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1 Overview
This supplementary explains architectural details of our proposed SAGAN and illustrates
subjective and objective results of additional experiments. The overall supplement has struc-
tured as follows:

• Section 2 describes implementation details.

• Section 3 illustrates quantitative results on benchmark datasets.

• Section 4 compares our SAGAN performance with Bayer-RGB images.

• Section 5 demonstrates the performance of SAGAN on real-world noisy inputs.

• Section 6 concludes our finding.

2 Network Details
Our SAGAN has designed as a fully-convolutions network. We denoted kernel size as K,
stride as S, padding as P, batch normalization as BN, activation function as ACT, skip con-
nection as SC, gated connection as GC, and our proposed Spatial-asymmetric attention mod-
ule as SAM throughout this section.

2.1 Generator
Table. 1 illustrates the details of our proposed SAGAN generator.
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Level Block Tensor Dimension Configuration
Input Conv In: H ×W ×3

Out: H ×W ×64
K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

Level 1 (Encoder)
Residual Block 1 In: H ×W ×64

Out: H ×W ×64
K = 3×3, S = 1, P = 1

SAM 1 In: H ×W ×64
Out: H ×W ×64

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

Gate 1 In: H ×W ×64
Out: H ×W ×64

K = 1×1, S = 1, P = 1

Down Sampling 1 In: H ×W ×64
Out: H/2×W/2×128

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU

Level 2 (Encoder)
Residual Block 2 In: H/2×W/2×128

Out: H/2×W/2×128
K = 3×3, S = 1, P = 1

SAM 2 In: H/2×W/2×128
Out: H/2×W/2×128

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

Gate 2 In: H/2×W/2×128
Out: H/2×W/2×128

K = 1×1, S = 1, P = 1

Down Sampling 2 In: H/2×W/2×128
Out: H/4×W/4×192

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU

Level 3 (Encoder)
Residual Block 3 In: H/4×W/4×192

Out: H/4×W/4×192
K = 3×3, S = 1, P = 1

SAM 3 In: H/4×W/4×192
Out: H/4×W/4×192

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

Gate 3 In: H/4×W/4×192
Out: H/4×W/4×192

K = 1×1, S = 1, P = 1

Down Sampling 3 In: H/4×W/4×192
Out: H/8×W/8×256

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU

Level 4 (Middle) Residual Block 4 In: H/8×W/8×256
Out: H/8×W/8×256

K = 3×3, S = 1, P = 1

SAM 4 In: H/8×W/8×256
Out: H/8×W/8×256

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU, SC = D. Sam. 3

Level 5 (Middle) Residual Block 5 In: H/8×W/8×256
Out: H/8×W/8×256

K = 3×3, S = 1, P = 1

SAM 5 In: H/8×W/8×256
Out: H/8×W/8×256

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU, SC = : SAM 4

Level 6 (Decoder)
Upsampling 1 In: H/8×W/8×256

Out: H/4×W/4×192
Scailing factor = 2

Residual Block 6 In: H/4×W/4×192
Out: H/4×W/4×192

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

SAM 6 In: H/4×W/4×192
Out: H/4×W/4×192

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU, GC = : Gate 3

Level 7 (Decoder)
Upsampling 2 In: H/4×W/4×192

Out: H/2×W/2×128
Scailing factor = 2

Residual Block 7 In: H/2×W/2×128
Out: H/2×W/2×128

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

SAM 7 In: H/2×W/2×128
Out: H/2×W/2×128

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU, GC = : Gate 2

Level 8 (Decoder)
Upsampling 3 In: H/2×W/2×128

Out: H ×W ×64
Scailing factor = 2

Residual Block 8 In: H ×W ×64
Out: H ×W ×64

K = 3×3, S = 1, P = 1,
ACT = Leaky ReLU

SAM 8 In: H ×W ×64
Out: H ×W ×64

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU, GC = : Gate 1

Output Conv In: H ×W ×64
Out: H ×W ×3

K = 3×3, S = 2, P = 1,
ACT = tanh, SC = : input

Table 1: Architectural details of proposed SAGAN generator.
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2.2 Discriminator

Table. 2 illustrates the details of our proposed SAGAN discriminator.

Level Block Tensor Dimension Configuration
Input Conv In: H ×W ×3

Out: H ×W ×64
K = 3×3, S = 1, P = 1,
BN, ACT = swish

Layer 1 Conv2 In: H ×W ×64,
Out: H/2×W/2×128

K = 3×3, S = 2, P = 1,
BN, ACT = swish

Layer 2 Conv3 In: H/2×W/2×128
Out: H/2×W/2×128

K = 3×3, S = 1, P = 1,
BN, ACT = swish

Layer 3 Conv4 In: H/2×W/2×128
Out: H/4×W/4×256

K = 3×3, S = 2, P = 1,
BN, ACT = swish

Layer 4 Conv5 In: H/4×W/4×256
Out: H/4×W/4×256

K = 3×3, S = 1, P = 1,
BN, ACT = swish

Layer 5 Conv6 In: H/4×W/4×256
Out: H/8×W/8×512

K = 3×3, S = 2, P = 1,
BN, ACT = swish

Layer 6 Conv7 In: H/8×W/8×512
Out: H/8×W/8×512

K = 3×3, S = 1, P = 1,
BN, ACT = swish

Layer 7 SAM In: H/8×W/8×512
Out: H/16×W/16×512

K = 3×3, S = 2, P = 1,
ACT = Leaky ReLU

Output Conv In: H/16 ×W/16 × 512,
Out: H/16×W/16×512

K = 1×1, S = 2, P = 1,
BN, ACT = swish

Average Pooling Flatten ACT = sigmoid
Table 2: Architectural details of proposed SAGAN discriminator.

3 Quantitative Evaluations

To study the feasibility of a learning-based deep method for noisy Nona-Bayer reconstruc-
tion, we have extensively studied the state-of-the-art methods and our SAGAN with bench-
mark datasets. This section detail the performance of deep methods in benchmark datasets
from sRGB (i.e., BSD100 [9], McM [12], Urban100 [3], Kodak [13], WED [8]) and linear
RGB (i.e., MSR demosaicking [5]) colour spaces.

3.1 Comparison on Benchmark Datasets

Table. 3 depicts the performance of existing reconstruction methods on benchmark datasets.
It can be seen that our proposed method can illustrate a consistent performance on bench-
mark datasets. Our proposed method can considerably outperform the existing reconstruc-
tion methods in evaluation criteria.

3.2 Ablation Study on Benchmark Datasets

Table. 4 demonstrates the ablation study on our novel components in benchmark datasets.
Our SAGAN components have a clear impact on noisy Nona-Bayer reconstruction. Notably,
each proposed component helps us to perceive a consistent performance in a diverse range
of image samples.
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Model σ
BSD100 WED Urban100 McM Kodak MSR Demosaicking
PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE

Deepjoint [4]

10

34.05 0.926 2.56 30.64 0.8954 3.38 30.50 0.9094 3.45 30.96 0.8745 3.20 32.02 0.9077 2.98 39.00 0.9464 1.64
Kokkinos [7] 35.17 0.9524 2.31 32.04 0.9273 2.94 32.12 0.9375 3.17 32.34 0.9053 2.72 33.72 0.9378 2.63 39.26 0.9539 1.74
DPN [6] 35.82 0.9585 2.10 32.25 0.9345 2.88 32.64 0.9447 3.02 32.54 0.9124 2.69 34.19 0.9447 2.43 39.84 0.9702 1.50
BJDD [10] 36.21 0.9624 2.20 32.85 0.9386 2.70 33.30 0.9488 2.87 33.07 0.9202 2.55 34.69 0.9498 2.49 41.40 0.9751 1.64
SAGAN 37.56 0.9676 1.69 33.65 0.9455 2.41 33.94 0.9533 2.57 34.11 0.9311 2.20 35.70 0.9541 2.02 43.17 0.9788 1.11
Deepjoint [4]

20

31.99 0.8667 2.90 29.45 0.8494 3.71 29.36 0.8638 3.75 29.81 0.8271 3.52 30.47 0.8403 3.31 36.14 0.8946 1.94
Kokkinos [7] 33.67 0.9284 2.50 30.98 0.904 3.19 31.07 0.9168 3.36 31.40 0.8827 2.94 32.29 0.9081 2.86 38.18 0.9411 1.76
DPN [6] 34.00 0.9336 2.42 31.11 0.9121 3.17 31.48 0.9247 3.26 31.51 0.8913 2.97 32.53 0.9141 2.76 38.39 0.9572 1.68
BJDD [10] 34.29 0.9389 2.53 31.62 0.9173 3.01 31.99 0.9295 3.15 32.05 0.8996 2.82 32.96 0.9207 2.81 39.71 0.9619 1.86
SAGAN 35.32 0.9457 2.03 32.27 0.9256 2.73 32.50 0.9355 2.85 32.87 0.9117 2.49 33.69 0.9263 2.37 41.26 0.9675 1.32
Deepjoint [4]

30

30.17 0.8027 3.38 28.20 0.7965 4.16 28.13 0.8116 4.17 28.59 0.7759 3.96 28.94 0.77 3.81 34.05 0.8407 2.29
Kokkinos [7] 32.40 0.9031 2.75 30.01 0.8794 3.46 30.06 0.8938 3.61 30.53 0.86 3.19 31.07 0.8785 3.13 36.84 0.9203 1.95
DPN [6] 32.55 0.9074 2.74 30.08 0.8881 3.47 30.39 0.9038 3.53 30.61 0.8694 3.24 31.15 0.8832 3.09 36.99 0.9411 1.93
BJDD [10] 32.90 0.9161 2.80 30.58 0.896 3.30 30.88 0.9104 3.41 31.12 0.8791 3.08 31.64 0.8935 3.10 38.27 0.9466 2.03
SAGAN 33.83 0.9246 2.31 31.17 0.9058 3.02 31.34 0.9181 3.12 31.86 0.8925 2.76 32.28 0.9009 2.68 39.59 0.9525 1.57

Table 3: Qualitative comparison between existing reconstruction methods for Nona-Bayer
reconstruction on benchmark sRGB and linear RGB datasets.

Model σ
BSD100 WED Urban100 McM Kodak MSR Demosaicking
PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE PSNR SSIM DeltaE

BaseNet
10

23.55 0.6623 9.82 22.45 0.6469 9.80 21.60 0.6475 10.04 22.60 0.6129 9.71 23.02 0.63 10.02 25.80 0.6804 8.51
SAN 36.45 0.9651 1.77 32.94 0.9408 2.52 33.14 0.9507 2.66 33.38 0.9240 2.29 35.03 0.95 2.10 38.19 0.9742 1.16
SAGAN 37.56 0.9676 1.69 33.65 0.9455 2.41 33.94 0.9533 2.57 34.11 0.9311 2.20 35.70 0.95 2.02 43.17 0.9788 1.11
BaseNet

20
23.32 0.6021 10.48 22.19 0.5999 10.31 21.40 0.6022 10.59 22.12 0.5657 10.16 22.82 0.56 10.89 24.68 0.6160 9.30

SAN 34.32 0.9416 2.12 31.62 0.9201 2.84 31.84 0.9314 2.94 32.19 0.9038 2.58 33.13 0.92 2.46 36.39 0.9598 1.42
SAGAN 35.32 0.9457 2.03 32.27 0.9256 2.73 32.50 0.9355 2.85 32.87 0.9117 2.49 33.69 0.93 2.37 41.26 0.9675 1.32
BaseNet

30
22.76 0.5329 11.53 21.62 0.5435 11.23 20.95 0.5500 11.51 21.43 0.5091 11.01 22.11 0.48 12.27 23.48 0.5371 10.46

SAN 32.90 0.9184 2.44 30.57 0.8989 3.13 30.75 0.9123 3.22 31.18 0.8827 2.87 31.76 0.90 2.79 35.19 0.9423 1.69
SAGAN 33.83 0.9246 2.31 31.17 0.9058 3.02 31.34 0.9181 3.12 31.86 0.8925 2.76 32.28 0.90 2.68 39.59 0.9525 1.57

Table 4: Ablation study on sRGB and linear RGB benchmark datasets.

4 Qualitative Evaluations
Nona-Bayer CFA patterns are prone to produce visual artefacts while reconstructing RGB
images. Therefore, we have extensively studied the performance of our proposed SAGAN
for noisy Nona-Bayer reconstruction and compared it with the ground-truth Bayer RGB
images.

4.1 Bayer vs. Nona-Bayer Reconstruction
Fig. 1 demonstrates the noisy Nona-Bayer reconstruction performance of our SAGAN on
different noise levels. It can be visible that, despite being contaminated with random noises,
our proposed SAGAN can reconstruct visually plausible images similar to the RGB Bayer
images. Even in the complex structure, our method illustrates a consistent performance and
exempt from visual artefacts.

4.2 High Frequency Image Reconstruction
Non-Bayer CFA like Nona-Bayer and Quad Bayer CFAs are prone to produce substantial
visual artefacts on high-frequency images [6, 10]. Thus, we studied the practicability of
our SAGAN on high-frequency images. Fig. 2 depicts the qualitative results of our pro-
posed SAGAN in high-frequency images on different noise levels. Our proposed method
can reconstruct high-frequency images without producing any notable visual artefacts.

5 Real-world Denoising with Nona-Bayer Reconstruction
Real-world sensor noises can considerably different from simulated noises [1, 11]. Hence,
we studied our proposed method on real-world noisy images. We trained and tested our
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(a)

(b)

(c)
Figure 1: Comparison between our reconstructed images and ground-truth RGB images.
In each pair, the left image is reconstructed by SAGN, and the right image refers to the
ground-truth RGB image. (a) Reconstruction at σ = 10. (b) Reconstruction at σ = 20. (c)
Reconstruction at σ = 30.

method on Smartphone Image Denoising Dataset (SIDD) [1, 2]. It is worth noting, SIDD
has been collected with smartphone image sensors and fit best with our target applications.
To study the real-world denoising with Nona-Bayer reconstruction, we extracted 205,279
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(a) (b) (c) (d)
Figure 2: Qualitative evaluation of our proposed SAGAN on the high-frequency image. Our
proposed SAGAN can handle high-frequency image scenes without producing any substan-
tial artefacts. (a) Ground-truth RGB image. (b) Reconstruction at σ = 10. (c) Reconstruction
at σ = 20. (d) Reconstruction at σ = 30.

image patches (dimension of 128× 128× 3) by utilizing 320 scenes from SIDD. We sam-
pled the extracted non-overlapping patches according to the CFA patterns and trained our
SAGAN for 200,00 steps (with batch size of 16). Later, we tested our model by incorpo-
rating Nona-Bayer inputs with real-world noise. Fig 3 and Fig 4 shows the performance
of our SAGAN on real-world noisy well-lit images, and low-light images. Our proposed
method can substantially suppress the real-world noises and reconstruct RGB images, even
in extreme stochastic lighting conditions.

(a) (b) (c) (d) (e) (f)
Figure 3: Nona-Bayer reconstruction with real-world noise suppression on well-lit condi-
tions. (a) & (d) Noisy image. (b) & (e) Noisy Nona-Bayer (input). (c) & (f) Reconstructed
images obtained by SAGAN.

6 Concluding Remarks
We studied our SAGAN on a diverse range of image samples. Our SAGAN can handle
synthesized and real-world sensor noises along with demosaicing without producing any
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(a) (b) (c) (d) (e) (f)
Figure 4: Nona-Bayer reconstruction with real-world noise suppression on low-light condi-
tions. (a) & (d) Noisy image. (b) & (e) Noisy Nona-Bayer (input). (c) & (f) Reconstructed
images obtained by SAGAN.

visual artefacts. Overall, the experimental results reveal the practicability of SAGAN for
noisy Nona-Bayer reconstruction.
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