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1 Additional dataset details
A summary of the used dataset, with the corresponding training, validation and testing splits,
after the pre-processing detailed in Section 4.1, is presented in Table 1.

Partition Cases Training Images
Training 271 268
Validation 26 −
Testing 25 −

Table 1: Dataset, partition and training images used.

2 Additional ablation studies
Model hyperparameters. To better understand the behaviour of the attention constrains
in the proposed model, we resort to extensive ablation experiments to determine the opti-
mal values of several model hyperparameters: the log-barrier t term, the size term p, the
weights of the attention loss on the training, λ and, finally, the network depth used to com-
pute the CAMs. Firstly, we empirically fix λ = 10 and use the first convolutional block
output to compute CAMs, to evaluate the impact of our model with p values included in
{0,0.05,0.10,0.15,0.20,0.25,0.30} and t values in {10,15,20,25,50}. These results are
reported in Table 2. Please note that all the results reported on the ablation studies are ob-
tained on the validation set.

We now validate the level depth from the encoder used to obtain the CAMs (i.e., network
depth s in Section 3.2), with the best configuration from the previous ablation in Table 2.
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t Size (proportion) term p
0 0.05 0.10 0.15 0.20 0.25 0.30

10 0.614 0.408 0.662 0.504 0.601 0.623 0.500
15 0.575 0.546 0.498 0.614 0.638 0.599 0.641
20 0.682 0.664 0.646 0.641 0.710 0.640 0.610
25 0.536 0.606 0.575 0.545 0.679 0.671 0.680
50 0.476 0.606 0.636 0.685 0.539 0.657 0.607

Table 2: Ablation study on the impact of p and t in the proposed formulation, where dataset
specific AUPRC results are presented. Bold highlights the best performing configuration.

Results are presented in Table 3, from which we can observe that maximizing the attention
in early layers leads to better results than in deeper layers. This could be produced by the
better spatial definition of early layers, and the benefits that the proposed constrain produces
in its later layers, which receive information from the whole image.

Conv1 Conv2 Conv3 Conv4
AUPRC 0.710 0.621 0.456 0.274
[DICE] 0.661 0.454 0.292 0.276

Table 3: Ablation study on network depth to compute CAMs. Dataset specific AUPRC is
presented for each possible configuration. Best performance highlighted in bold.

Next, in Table 4 we study the optimal weight to balance the proposed attention loss, by
evaluating the performance of our formulation across several λ values. The experiments
presented on the main paper are obtained using the best configuration: t = 20, p = 0.20,
λ = 10, with CAMs being obtained form the first convolutional block.

λ

0.01 0.1 1 10 100
AUPRC 0.150 0.443 0.609 0.710 0.587
[DICE] 0.207 0.502 0.609 0.661 0.587

Table 4: Ablation study on the influence of attention expansion losses in relation to its rel-
ative weight, λ . Dataset specific AUPRC and DICE are presented for each validated value.
Bold numbers indicate the best performance.

Number of slices to generate the pseudo-volumes. In our experiments, we followed the
standard literature [7] to generate the pseudo-labels for validation and testing. Nevertheless,
it is unclear in unsupervised anomaly detection of brain lesions the appropriate number of
slices used from the MRI scans. We now explore the impact of including more slices in these
pseudo-volumes, which increase the variability of normal samples. In this line, we hypotetize
that the dimension of the VAE latent space may be a determining factor in absorbing this
increased variability. The appropriate z dimension is also unclear in the literature. For
instance, [9] uses z = 128, while [7] uses z = 64, and we obtained better results using z = 32.
To validate the proposed experimental setting and lattent space dimension, we now present
results using increasing number of slices around the axial midline N = {10,20,40}, and two
different latent space dimensions z = {32,128} for both a standard VAE and our proposed
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model, in Table 5. We can observe that despite the gap between the two method is reduced as
the number of slides is increased, this difference is still significant. Finally, we can observe
that an increasing on z dimension does not produce gains in performance in any case. Note
that the model hyperparameters used are optimized for z = 32, and N = 10, which also could
produce some underestimation of the proposed model performance when N increases.

Method zdim N slices
10 20 40

Proposed 32
0.710
0.661

0.581
0.577

0.572
0.576

128
0.601
0.599

0.554
0.562

0.559
0.556

VAE 32
0.275
0.398

0.259
0.373

0.229
0.362

128
0.252
0.368

0.250
0.384

0.217
0.347

Table 5: Ablation study on number of axial slices around the center used from MR brain
volumes, and lattent space dimension, for the proposed model and an standard VAE. We
report the AUPRC (top row) and the best [DICE] (bottom row).

On the impact of the reconstruction losses. We evaluate the effect of including several
well-known reconstruction losses in our formulation: SSIM [38] and L2-norm. Table 6 re-
ports the results from these experiments, where we can observe that, while BCE and SSIM
reconstruction losses yield the best performances, integrating the L2-norm loss in our formu-
lation degrades the performance of the proposed model.

BCE L2 norm SSIM
AUPRC 0.710 0.600 0.679
[DICE] 0.661 0.612 0.649

Table 6: Ablation study on the reconstruction losses for the proposed approach. Best results
in bold.

Using statistics from normal domain for anomaly localization threshold As mentioned
along the manuscript, a main limitation of unsupervised anomaly localization methods is the
need of using anomalous images to set a threshold on the obtained heatmaps to locate anoma-
lies. Several methods [7] have discussed the possibility of using a given percentile from the
normal images (i.e., no anomalies) distribution to set the threshold. An ablation study on
the percentile value is presented in Table 7 for our proposed model and the best performing
baseline. Compared to the best baseline method in Table 1 of the main manuscript, i.e., F-
anoGAN, our model substantially yields better performance. Nevertheless, we found that the
best results are obtained on the percentile 95%, whereas [7] found the operative performance
on the percentile 98%. This suggests that, even though not used directly, anomalous images
are still required to find the optimal value.

Model parameters. In this section, we compare our formulation to existing approaches in
terms of model complexity. Since previous residual-based methods require the generation
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OP th=0.5 p85 p90 p95 p98
Proposed 0.661 0.579 0.498 0.602 0.657 0.597
F-anoGAN 0.525 − 0.310 0.390 0.505 0.488

Table 7: Ablation study on threshold values from normal images. pX indicates the average
percentile used on the training set (normal images) to compute the segmentation threshold.
OP indicates the operative point from area under precision-recall curve, using all validation
dataset, which contains anomalous images. The metric presented is the dataset-level DICE.

of normal counterparts from anomalous images, they typically integrate an additional dis-
criminator to create more realistic images, and require to use the trained generative decoder
during inference. On the other hand, our proposed formulation only requires the encoder
part of the network to localize anomalies, which reduces the number of required parameters,
as indicated in Table 8. On the other hand, as highlighted in previous works [20] the cost of
adding a single constraint is negligible.

Method ∼Parameters (millions)
Train Inference

Context VAE [40] 15.0 15.0
VAE [6, 41] 15.0 15.0
F-anoGAN [34] 17.8 15.0
Proposed 15.0 13.3

Table 8: Parameters of the proposed method and best performing baselines during both,
training and inference stages.

Additional qualitative results. In the following Figure 1, we show complementary exam-
ples of the proposed method performance.
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Figure 1: Qualitative evaluation of our method.


