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The document is structured as follows. We recall first the abbreviations which are used
and which will help the reader follow the next sections (Section 1). Then, we present and
discuss the ablation study (Section 2). Section 3 provides all the information which is needed
in order to duplicate and evaluate the result of the experiments performed in the main paper,
more specifically the monocular depth estimation (Section 3.2), the optical flow estimation
(Section 3.3) and the toy example (Section 3.4). Information about the accuracy of the main
task models is included as well. Finally, Section 4 presents some additional qualitative results
which provide further insights about the behavior of SLURP and of the other considered
strategies.

1 Notations

In Table 1 we summarize the abbreviations used in the paper.

Abbreviation Meaning

AUROC Area under receiver operating characteristic curve
AUSE Area under sparsification error

Confid ConfidNet uncertainty estimation solution

DE Deep ensembles

EE Empirical ensemble

MC MC-Dropout

MD Monocular depth

MHP Multi-hypothesis prediction network for optical flow uncertainty estimation
OF Optical flow

SC Sparsification curve

Single-PU Single predictive uncertainty

Table 1: Summary of the abbreviations of the paper.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Ablation study

1. Ablation study settings: The ablation study for the monocular depth (MD) task is imple-
mented on KITTI [8, 18] Eigen-split test set [5], Cityscapes test set [3], Foggy Cityscapes-
DBF test set [17] and Rainy Cityscapes test set [9]. The ablation study for the optical flow
(OF) task is implemented on FlyingChairs test set [4], Sintel training set [ 1] and KITTI 2015
training set [8, 15, 16]. Brief descriptions of these datasets can be found in the main paper.
We use the same uncertainty evaluation metrics (AUSE and AUROC) as section 4.2 in the
main paper.

2. Ablation study goals: We want to highlight the impact of the two considered inputs
on the final performance (namely the image features and the prediction results features), and
the impact of the considered loss (binary cross entropy loss and mean square error loss).

3. Results: The models with different inputs and different loss functions are presented
as follows. Table 2 presents the model performance on OF task and Table 3 illustrates the
results on MD task. Note that in the tables BCE and MSE denote binary cross entropy loss
and mean square error loss respectively, PredOnly and RGBOnly denote the models taking
only prediction map as input and the models taking only RGB image as input respectively.
No special note means that the model will use both RGB and prediction results as input and
BCE as the loss function (the default behavior).

4. Discussions: Firstly, regarding the performance of the different loss functions, we found
that the results obtained with the BCE loss are almost systematically better than those pro-
vided when using MSE loss. We think this is because when we have a correctly trained
predictor for the main task, most of the data points have minor errors, while a small number
of data points have high errors. Using the MSE loss will amplify the more significant pre-
diction errors and reduce the minor errors, making the model unable to fit well. Our target
scaling uses a soft clipping strategy to centralize the distribution of data for better fitting.

For different inputs, we found that it is essential to use the prediction map as the input
through the evaluation results. The input of the RGB image sometimes affects the gener-
alization ability of uncertainty estimation if the main task model can generate already very
good prediction results. According to the visualizations and evaluation results, we can see
that the influence of the input of the prediction map is dominant because the uncertainty map
of dual input and the one with only the prediction map input are similar. On the other hand,
the RGB image can supplement some missing semantics of the prediction map, such as the
Fig 1 FlyingChairs where RGB input can supplement the lack of chair legs and in the Fig 2
where RGB input supplement the uncertainty of the sky (although the sky does not have
ground truth of depth, it should have a high degree of uncertainty).
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Conditions
Input source RGB Input v X v v
Prediction map Input X v v v
Loss MSE X X v X
BCE v v X v
Datasets Criteria Ours RGBOnly  Ours PredOnly  Ours MSE ~ Ours BCE
FlyingChairs AUSE-EPE 1.82 1.24 1.41 1.20
AUROC 0.944 0.972 0.967 0.974
KITTI AUSE-EPE 8.40 4.87 5.40 4.69
AUROC 0.586 0.800 0.793 0.800
Sintel Clean AUSE-EPE 7.43 2.73 3.19 291
AUROC 0.639 0.898 0.883 0.896
Sintel Final AUSE-EPE 8.24 271 3.11 2.86
AUROC 0.575 0.907 0.889 0.906

Table 2: Ablation study for the OF task. Bold value: result with the best performance. Blue value:

second performance.

Conditions

Input source RGB Input v X v v

Predinction map Input X v v v

Loss MSE X X v X

BCE v v X v

Dataset Criteria Ours RGBOnly  Ours PredOnly ~ Ours MSE ~ Ours BCE
AUSE-RMSE 1.84 1.76 1.74 1.68
KITTI AUSE-Absrel 4.45 4.31 4.19 4.36
AUROC 0.879 0.890 0.894 0.895
AUSE-RMSE 9.95 9.40 9.82 9.48
Cityscapes AUSE-Absrel 10.68 9.23 10.29 10.90
AUROC 0.344 0.446 0.414 0.400
After fine-tuning on Cityscapes

AUSE-RMSE 3.47 3.45 4.71 3.05
Cityscapes AUSE-Absrel 6.71 6.47 6.93 6.55
AUROC 0.837 0.844 0.766 0.849
Cityscapes AUSE-RMSE 3.97 343 4.80 3.39
Rainy s=1 AUSE-Absrel 6.95 5.52 7.30 5.62
AUROC 0.739 0.795 0.68 0.788
Cityscapes AUSE-RMSE 3.98 3.39 4.92 3.36
Rainy s=2 AUSE-Absrel 6.68 5.16 7.09 5.28
AUROC 0.747 0.801 0.689 0.794
Cityscapes AUSE-RMSE 4.11 341 5.07 341
Rainy s=3 AUSE-Absrel 6.77 4.85 7.06 5.05
AUROC 0.748 0.811 0.694 0.801
Cityscapes AUSE-RMSE 3.55 3.42 4.92 3.04
Foggy s=1 AUSE-Absrel 6.40 6.15 6.92 6.25
AUROC 0.835 0.841 0.763 0.847
Cityscapes AUSE-RMSE 3.51 3.39 5.03 3.01
Fogay s=2 AUSE-Absrel 6.23 5.98 6.89 6.06
AUROC 0.838 0.845 0.767 0.852
Cityscapes AUSE-RMSE 3.48 3.36 5.24 3.08
Foggy s=3 AUSE-Absrel 5.97 5.72 6.75 5.80
AUROC 0.845 0.852 0.773 0.857

Table 3: Ablation study for the MD task. Bold value: result with the best performance. Blue value:

second performance. s (e.g s=1) indicates severity, higher the s value, higher the severity.
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Figure 1: Uncertainty estimation examples in ablation study for OF task. The first row of each
dataset block represents the input image pair, ground truth and predicted optical flow and the prediction
error. The prediction map and error map are made by a single FlowNetS model as an example. The
second row of each dataset block represents the uncertainty results in using SLURP side learner with
different inputs and different loss functions. Black indicates higher uncertainty, white indicates lower

uncertainty.
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Figure 2: Uncertainty estimation examples in ablation study for MD task. The first row of each
dataset block represents the input image, ground truth and predicted depth map and the prediction
error. Since the ground truth is sparse, we use interpolation to rebuild the ground truth map just for
visualization. The predicted depth map and error map are made by a single BTS model as an example.
The second row of each dataset block represent the uncertainty results in using SLURP side learner with
different inputs and different loss functions. For uncertainty maps, black indicates higher uncertainty,
white indicates lower uncertainty. For depth maps, black represents deeper depth, and white represents
shallower depth.
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3 Experiments

3.1 Evaluation protocol details
3.1.1 Optical flow

Let us consider an optical flow dataset D = {(x;,y;)};» where y; € R?, y; = (u;,v;) is the
ground truth optical flow for pixel x;. Below, ¥; = (i;, ;) represents the optical flow predic-
tion.

1. End point error (EPE): The average end point error for valid pixels in D is the Euclidean
distance between y; and y;:

1
EPE=— ) \/(ui—ﬁi)2+(Vi—\9i)2 (1
D] (ui,vi)eD
EPE metric is used for illustrating the performance of the models we use in OF tasks shown
in Table 6 and it’s also used in AUSE and AUROC evaluation for OF task.

3.1.2 Monocular depth

Let us consider a monocular depth dataset D = {(x;,d;)}; where d; € R™ is the ground truth
depth value for pixel x;. Below, d; represents the depth prediction. The metrics we used in
the evaluations are as follows:

1. Root mean square error (RMSE):

RMSE:\/ Y lldi—dil? )

di€|D|

2. Absolute relative error (Absrel):

1 .
Absrel = — Y |d; —d;| /d; 3)
|D‘ dieD

3. Threshold dk: Inlier metrics as proposed in [5], k in dk indicates the power of the
threshold (thr), we take thr = 1.25. In this case, d1: thr = 1.25; d2: thr = 1.25%; d3:
thr = 1.25%, and dk represents the proportion of pixels that meet the threshold condition:

d; d;
dk =max(=,3) = & < thr* 4
@3~ @
Al di d;
dk = 7~ ,where A = { x;,such that § = max(—, =) and §; < thr* 5)
|D‘ dl dl
4. Squared relative difference (SqRel):
SqRel = — Y ||d; —dil|* /d; (6)
\D| dieh

5. Root mean square log error (RMSElog):

1 A
RMSElog= | — ¥ ||logd; —logdj|[? )
ID| d;€|D|
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Models Datasets higher is better lower is better
) o d1 d2 d3 AbsRel SqRel RMSE RMSElog logl0
MC KITTI 0.945 0.992 0.998 0.072 0.287 2.902 0.107 0.031

Cityscapes | 0.103  0.255 0.453 1.051 18.942  18.986 0.842 0.324

EE (DE) KITTI 0.957 0.993 0.999 | 0.059 0.233  2.688 0.093 0.026

Cityscapes | 0.214 0430 0.560 | 0.837 14.459  18.441 0.845 0.298

Ours KITTI 0.955 0.993 0.998 | 0.060 0249  2.798 0.096 0.027

(Single-PU, Original [14]) Cityscapes | 0.183 0.386 0.519 | 0.963 17.230  18.948 0.896 0.321
After fine-tuning on Cityscapes

MC Cityscapes | 0.882 0.974 0.992 | 0.117 0917  5.625 0.169 0.049
EE (DE) Cityscapes | 0.920 0.983 0.995 | 0.098 0.635  4.889 0.149 0.043
Ours (Single-PU) Cityscapes | 0.906 0980 0.993 0.104 0.711 5.216 0.159 0.046

Table 4: The performance on KITTI and the performance on Cityscapes dataset before and after fine-
tuning the models. Before fine-tuning: Training set: KITTI Eigen-split training set, Test set: KITTI
Eigen-split test set and Cityscapes test set; After fine-tuning: Fine-tuning training set: Cityscapes
training set, Test set: Cityscapes test set. The three main task models used in EE are also used in DE
and Single-PU also shares the same main task model with our approach.

6. Average log10 error (logl10):

logl0 = ) |log,od; —log,odi| ®)

1
|D| dic|D|
These six metrics measure the performance of the MD models we use, and are shown in
Table 4. At the same time, the first three metrics are also applied for AUSE and AUROC
evaluations. Additionally, for AUROC, we choose k = 1 for threshold dk metric.

3.1.3 Sparsification plot settings

For both MD and OF tasks, the area under the sparsification error curve (AUSE) made by the
sparsification curve is computed image-wise and not dataset-wise in our evaluations because
of the high memory consumption which would be required for sorting vaues across the entire
dataset.

Image-wise: We calculate the standardized AUSE for every image in the test set by ranking
its pixels according to the corresponding predicted uncertainty and true error, then calculate
the average AUSE after traversing the entire test set.

Dataset-wise: By collecting all pixels of all images in the test dataset, we calculate the
AUSE by sorting their predicted uncertainty and true error.

3.2 Monocular depth estimation task supplement
3.2.1 Model precision

Table 4 shows the main task model performance for different uncertainty estimation ap-
proaches [6, 12, 13]. We have noticed that after the model is trained on KITTI, it cannot
obtain reasonable accuracy on Cityscapes. This is because the ground truth of KITTI dataset
is sparse, and only the lower half of the content is present. At the same time, the scene of
Cityscapes is more complicated. Therefore, we fine-tune all models on Cityscapes to obtain
reasonable accuracy.
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3.2.2 Training settings

In the MD task, we choose to use a sequential training strategy for single predicted uncer-
tainty (Single-PU) [12], deep ensembles (DE) [13] and our SLURP side learner. In other
words, we first complete the training of the main task models (BTS [14]) and then train dif-
ferent uncertainty predictors according to the settings. Specifically, for Single-PU, we use
an identical BTS model to estimate the uncertainty with using the output of the main task its
corresponding main task model in the loss. For DE, it is a mixture of multiple Single-PUs,
so we just repeat the previous procedures. Because of the ensemble property of empirical
ensemble (EE) and DE, EE and DE can share the same main task predictors. In the same
sense, the main task predictor of our side learner is chosen from one of EE(DE)’s main task
predictors, which is the same one as the main task model of Single-PU. This method can
ensure that the prediction accuracy of the main task will not be affected by the training of
the uncertainty predictor. The ConfidNet [2] (Confid) implementation for BTS references its
implementation on SegNet. The detailed operations are consistent with the descriptions in
the main paper.

We build our side learner according to SLURP solution in the main paper (also shown in Fig
2 in the main paper) for BTS and here are some supplements. We directly use the frozen
RGB feature maps from the encoder of main task BTS model. To convert 1-channel pre-
dicted depth map to 3-channel input, we expand it three times. The detailed settings for
different uncertainty estimation models are listed in Table 5, all main task models are trained
identically according to the original BTS [14] model training settings.

3.3 Optical flow supplement
3.3.1 Model precision

Table 6 shows the main task precision for different uncertainty estimation strategies. Our
SLURP side learner picks one of the models from EE as our main task predictor. The
main task models are trained only on FlyingChairs training set with official split and the
KITTI dataset we choose for main task precision evaluation and also uncertainty estima-
tion/evaluation is KITTI 2015 with occlusions. In the original FlowNetS paper [4], the pre-
cision evaluation is based on KITTI 2012 [7].

3.3.2 Training settings

In the optical flow task, for EE, we directly train multiple main task prediction models
FlowNetS [4], and our side learner selects one of the models as our main task predictor. For
Single-PU, because FlowNetS is relatively simple, we directly modify the original model
to output two values for each pixel, one representing the predicted value of the main task
and the other the uncertainty value. For DE, we train multiple Single-PU models. For multi-
hypothesis prediction network (MHP) [11], we modified FlowNetS so that it can output eight
(number of hypothesis) pairs of main task - uncertainty results. Futhermore, we use another
FlowNetS as the MergeNet. It should be noted that, the authors did not mention the structural
information about MergeNet in the paper. We choose FlowNetS based on the use of model
stacking in the article. We train MHP followed by the two-stage training schedule provided
in the supplementary of this paper.

For our SLURP side learner, since the encoder in FlowNetS is designed for capturing the
object movement for two images and the total uncertainty will reflect only the semantics
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Hyper-parameters MC EE DE (Single-PU, Confid) Ours

learning rate for

main task model (Training on KITTI)
number of training epoch (Training on KITTI) 50 50 50 8
learning rate forside learner (Training on KITTI) / / / le-4
learning rate for

le-4 le-4 / /

main task model (Fine-tuning on Cityscapes) 3e-3 ¢S / !
number of training epoch (Fine-tuning on Cityscapes) 30 30 30 16
learning rate for

side learner (Fine-tuning on Cityscapes) ! ! / 8e-3
learning rate for identical uncertainty estimator / / Se-5 /
learning rate for side learner / / / le-4
batch size 4

number of training epoch 50 50 50 8
we{ghl decay for le2 le2 / /
main task model

Welgl_n decay for_ . / / lea /
identical uncertainty estimator

weight decay for

side learner feature extractor ! ! / fe-3
weight decay for / / / ded

side learner uncertainty generation blocks

Model structure and other settings

encoder backbone for main task model,
identical uncertainty estimator and Densenet 161 [10]
side learner feature extractor

. BCE
loss same as BTS [10]  same as BTS [10] Laplacian NLL 2 —=00125
number of latent stages n / / / 5
number of latent stage output channel ¢ / / / 1
number of final uncertainty output channel Cy,,; / / / 1
dropout rate py 0.4 / / /
ensemble size M 1 3 3() 1
during inference time 8 3 3(1) 1

number of forward propagation

Table 5: MD model settings for MC, EE, DE, Single-PU, Confid and Ours.

Datasets EE MC  Single-PU DE Ours  Orginal [4]
FlyingChairs test | 1.79 3.71 2.04 1.93 1.96 2.71
KITTI 2015 occ | 18.36 16.53 21.21 20.78  19.39 /
KITTI2012noc | 6.77  19.02 8.34 8.40  7.65 8.26
Sintel clean train | 5.10  6.31 5.12 500 520 4.50
Sintel final train | 6.50  6.97 6.53 6.41 6.62 5.45

Table 6: The main task accuracy for the uncertainty estimators in OF task. The values present the end-
point error (EPE). Training set: FlyingChairs training set [4], Test set: FlyingChairs test set, KITTI
2012 noc [7] which was used in the original FlowNetS paper, KITTI 2015 occ [8, 15, 16] and Sintel
full training set [1]

from the first image, we use two DenseNet161 backbones [10] as RGB and prediction map
encoders respectively. We also used two DenseNet121 backbones for the lighter version. In
order to transfer the 2-channel flow prediction to a 3-channel input, we just add one convo-
lution layer to expend the channel number before the RGB feature extractor. All uncertainty
model training settings are shown in Table 7.

3.4 Synthetic 1D regression task supplement

Because of the simplicity of the data, the main task predictor we use is a neural network com-
posed of one hidden layer and 3000 neurons. In SLURP joint-training, we train our main
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Hyper-parameters MC EE DE (Single-PU, Confid) Ours
learning rate for (modified) main task model le-4 le-4 le-4 /
learning rate for side learner / / / le-4
batch size 8
number of training epoch 216 216 216 30
weight decay for (modified) main task model 4e-4 4e-4 4e-4 /
weight decay for side learner feature extractors / / / le-4
weight decay for side learner uncertainty generation blocks / / / 4e-4

Model structure and other settings
same as same as . BCE
loss FlowNetS [4]  FlowNetS [4] Laplacian NLL A =0.05
number of latent stages n / / / 5
number of latent stage output channel ¢ / / / 2
number of final uncertainty output channel C,,; / / / 1
dropout rate py 0.4 / / /
ensemble size M 1 3 3(1) 1
during inference time number of forward propagation 8 3 3(1) 1

Table 7: OF model settings for MC, EE, DE, Single-PU, Confid, MHP and Ours. MHP training setting
is followed by the same schedule provided by is original paper.

task model and side learner at the same time without freezing any layers, and in SLURP
sequential-training, we train our side learner while freezing the main task and using the la-
tent values of it. For the side learner, following general SLURP solution, we use the same
hidden layer as the prediction result feature extractor and three hidden layers with 128, 64,
16 neurons respectively as the context block in the uncertainty generation block, since we
have only one stage, there is no fusion block in the end. The training details for all uncer-
tainty estimation approaches are listed in Table 8.

We can give an insight that SLURP strategy can also work on 1D-regression tasks. In ad-
dition, the structure of the SLURP side learner is variable, and other uncertainty estimation
methods are limited to the structure of the main task model, we are able to get better uncer-
tainty results.

Hyper-parameters MC EE DE (Single-PU) . ASLURPA SLAURPA .
joint-training  sequential-training
number of main task latent features 3000
learning rate for main task model le-1 le-1 le-2 le-1 /
l?ammg rate for / / / le-1 led
side learner feature extractor
l;arnmg rate for A A / / / lod led
side learner uncertainty generation blocks
batch size 50
number of training epoch 50
weight decay for le2  1le-2 le-2 le-2 /
main task model
V\'/elght decay for / / / le2 le3
side learner feature extractor
weight decay for . / / / le-3 le2
side learner uncertainty generation blocks
Model structure and other settings
loss MSE MSE Gaussian NLL Gaussian NLL ~ MSE
dropout rate 0.4 / / / /
ensemble size M 1 3 3(1) 1 1

Table 8: 1D regression task model settings.
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4 More visualization results
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Figure 3: Uncertainty estimation results for MD task. The ground truth maps are rebuilt by inter-
polation just for visualization. The depth prediction map and the error map are generated by a single
BTS model as an example. MC-Dropout uncertainty maps are obtained by eight forward propagation,
Deep ensembles and Empirical ensembles uncertainty maps are obtained from three models ensembles.
For uncertainty maps, black indicates higher uncertainty, white indicates lower uncertainty. For depth
maps, black represents deeper depth, and white represents shallower depth.
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Figure 4: Uncertainty estimation results for OF task. The optical flow prediction map and the error
map are generated by a single FlowNetS model as an example. MC-Dropout uncertainty maps are
obtained by eight forward propagation, Deep ensembles and Empirical ensembles uncertainty maps
are obtained from three models ensembles. For uncertainty maps, black indicates higher uncertainty,
white indicates lower uncertainty.
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