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Abstract
This supplementary material is organized as follows: Section A demonstrates that

our geometric and latent heads are a special case of a multi-head attention layer in the
transformers literature. Section B shows an example of the prediction of each auxiliary
output of the network. Section C describes the local aggregation step of our two-headed
layer and how it relates to graph neural networks. In Section D the geometric and latent
attention scores of our Ge-Latto layer are shown. Finally, Section E extends the ablation
study presented in the main paper.

A Special Case of Multi-head Attention Transformer
Each head (geometric or latent) in our attention mechanism can be considered as a multi-
head attention layer with feature dimension (channels) D′ = 1 for each head or number of
heads n = D, being D the dimensionality of the features in each layer. This is demonstrated
as follows. Considering Eq. 1, the multi-head equation of a feature vector Hi ∈RD proposed
by Vaswani et al. [1], where Qk, Rk and Vk are the query, key and value vectors with size D′.

Hi = Concat(headi,1,headi,2,headi,3, ...,headi,n)

headi,n =
K

∑
k=1

((Mφ(γ(Qk,Rk)))�Vk)

where :
M= Replicates the vector D′ times

φ = Normalization function
γ = Similarity function

dim(γ(·)) = 1
dim(headi,n) = D′

dim(Hi) = D = nD′

K = Neighborhood size

(1)
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Eq. 1 shows there is one weight φ per head n, and each φ multiplies D′ feature channels.
Therefore, the feature Hi ∈ RD has n weights φ and nD′ feature channels. In the case
where the number of heads n is D, D′ would have the value of 1. There would be one weight
φ per head, and each weight would multiply one feature channel. This would give a vector
Hi with D weights φ and D feature channels, which are the dimensions of our geometric
and latent head features, as seen in Eq. 2 (latent feature equation), or Eq. 3 and Eq. 4 in the
main paper.

Hi =
K

∑
k=1

(φ( fhatt (hk))�hk) (2)

Where the dimension of fhatt (hk), hk and Hi is D.

B Auxiliary Loss Outputs
Each auxiliary loss optimizes the segmentation output of a sub-sampled version of the point
cloud. Figure S1 shows an example of these outputs.
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Figure S1: Auxiliary outputs. The network has 4 auxiliary outputs at multiple scales. One
output comes from the last encoder layer and the other outputs plus the main output are
obtained from the decoder layers.

C Gelatto as a Graph Neural Network
Our network performs local aggregation following steps similar to those that a graph neural
network (GNN) uses to update the value of a node through message passing:

• Our network updates the information of each node (center point pi) based on the in-
formation from its neighborhood qk, preserving graph symmetries (permutation in-
variance).

• The weights (edges) between the center point and its neighbors are learned through
our geometric and latent self-attentions.
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• At every step (each new layer of the network), the information from each node is
propagated to a further (or neighbor) node until almost all the global information is
aggregated.

Table S1 shows this relationship graphically.

Illustration Local aggregation (message passing) steps

• Consider a set of points pi in the point cloud P.

• Our method obtains a local patch around a point by find-
ing all the neighbor points inside a radius r. Here, we
visualize the neighborhood of two points, red and cyan.

• The patch is used to create a graph between the center
points pi (red and cyan) and their neighbors qk (yellow).

• To increase the robustness of our network, we randomly
chose k neighbors for each centroid. It can be seen as
randomly zeroing the value of an edge.
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• Our network uses self-attention (Eq. 3 and Eq. 4 in the
main paper) to learn the edges that connect a centroid
with its neighbors.

• The information at a node is updated by aggregating
the features from its neighbors and the learned edges.
Gelatto creates two graphs, one for the geometric fea-
tures, and another for the latent features.

• After the message passing step, the updated geometric
and latent features are concatenated and processed by an
MLP layer.

Table S1: Local aggregation process of Gelatto.

D Geometric and Latent Attention Scores
To show the attention scores learned by our Ge-Latto layer after each encoder step, an input
point, that was not discarded by the sampling process, was picked. Because the attention
score of each point has a dimension D, where D is the dimensionality of a given layer, we
randomly picked a value d ∈ D per attention score to be shown in Figure S2 and Figure S3
for the geometric and latent heads, respectively.
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Figure S2: Learned geometric attention scores from a point (in yellow). The attention scores
are represented in red, the stronger the intensity, the higher the score. The small black points
are the sampled points at a given layer, the bigger points are the selected neighbor points
inside a radius. The image shows the attention scores of the two ResNet Blocks at every
encoder layer.
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Figure S3: Learned latent attention scores from a point (in yellow). The attention scores are
represented in green.
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To observe how our network captures global and local relationships, all the attention
scores of each head were grouped in Figure S4. The figure shows that, for the chosen point,
the latent head focuses more on closer points, meanwhile, the geometric head not only pays
attention to the local points but also to more distant points, such as those of the back of the
chair and legs.

Geometric attention Latent attention

Figure S4: Geometric and Latent attention scores grouped.

E Extended Ablation Study

E.1 Auxiliary losses
In the main paper, we only considered the case when all the auxiliary weights alpha αi have
the same value. This section explores different values for each alpha using grid search. The
experiment consists of varying the alpha of one auxiliary loss, from 0 to 1 with increments of
0.2, and fixing the other alphas to 0.4 (the best value found before); the process is repeated
for the 4 auxiliary losses. The values that the varying alpha can take are [0, 0.2, 0.6, 0.4, 0.8,
1], where 0 means that we do not minimize the loss for that output. We trained 24 variations
of our network (4 auxiliary losses with 6 values for alpha). Each network was initialized with
the weights from our best model, for the S3DIS area 5 dataset, and trained for 50 epochs.
This experiment showed that there is no improvement when we vary the alphas individually
and that the best value for this parameter is 0.4. However, we still observe that the use of
auxiliary losses improves the performance of the network. As seen in Table 4 in the main
paper, in the ablation study, when the network is trained without auxiliary losses, it obtains an
IoU of 67.4%. Meanwhile, when the auxiliary losses are added, the performance increases
to 69.2%.
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Method Parameters mIoU
MinkowskiNet 21.7M 65.3
KPConv 25.8M 67.1
PCT 2.88M 61.3
FPConv 17.6M 62.7
Ge-Latto (ours) 15.3M 69.2

Table S2: Model parameters comparison table. The parameters are in millions and the metric
is for the S3DIS dataset.

Number of points 6K 10K 20K 200K
Inference batch size 5 3 3 3
Inference time 100ms 200ms 210ms 300ms
Training batch size 2 - - -
Training time 160ms - - -

Table S3: Training and inference time.

E.2 Model Size and Speed
Table S2 shows that our method achieves the state-of-the-art in the S3DIS dataset with fewer
parameters than the previous methods. Our network has only 15.3M parameters, whereas
KPConv has 25.8M, MinkowskiNet 21.7M, and FPConv 17.6M. The only network that has
fewer parameters is PCT, 2.88M. However, we are 8% better in point cloud semantic seg-
mentation and obtain a similar performance in ModelNet40.

The training and inference time using different numbers of points and batch sizes are
shown in Table S3 reports. This table shows that it takes around 160ms to train 6144 points
with a batch size of 2. At inference time, our network can analyze 6144 points with a batch
size of 5 in 100ms, 20K points with a batch size of 3 in 210ms, and 200K points with a batch
size of 3 in 300ms. All the tests were done using an NVIDIA RTX2080ti. These experiments
show that our network is suitable for its applications that need a lighter network.
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