
CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION 1

Supplementary: Self-supervised Real-time
Video Stabilization

Jinsoo Choi1

jinsc37@kaist.ac.kr

Jaesik Park2

jaesik.park@postech.ac.kr

In So Kweon1

iskweon77@kaist.ac.kr

1 KAIST
Republic of Korea

2 POSTECH
Republic of Korea

1 Network details
We provide details on the Coarse-Net, Fine-Net, and Margin-Net architectures.

1.1 Coarse-Net

The input to the Coarse-Net is the flow map between two frames computed via the PWC-Net,
which is downscaled to size 64×64.

Layer name filter size channels stride upscale activation
Encoder0 3×3 16 1 - LeakyReLU(0.2)
Encoder1 3×3 16 2 - LeakyReLU(0.2)
Encoder2 3×3 16 2 - LeakyReLU(0.2)
UpScale0 - 16 - ×2 -
Decoder0 3×3 16 1 - LeakyReLU(0.2)

Concat(w/ Enc1) - 16+16 - - -
Decoder1 3×3 16 1 - LeakyReLU(0.2)
UpScale1 - 16 - ×2 -
Decoder2 3×3 2 1 - LeakyReLU(0.2)
Linear0 - 1000 - - LeakyReLU(0.2)
Linear1 - 100 - - LeakyReLU(0.2)
Linear2 - 3 - - -

Table 1: Coarse-Net architecture details.

1.2 Fine-Net

The input to the Fine-Net is also the flow map between two frames computed via the PWC-
Net, which is downscaled to size 32×32.

1.3 Margin-Net

The input to the Margin-Net is the stabilized frame from the Fine-Net in addition to four
adjacent original frames (two on each side).

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION

Layer name filter size channels stride upscale activation
Encoder0 3×3 32 2 - LeakyReLU(0.2)
Encoder1 3×3 64 2 - LeakyReLU(0.2)
Encoder2 3×3 64 1 - LeakyReLU(0.2)
Decoder0 3×3 32 1 - LeakyReLU(0.2)
Decoder1 3×3 16 1 - LeakyReLU(0.2)
AvgPool 3×3 16 1 - -
Decoder2 3×3 2 1 - LeakyReLU(0.2)

Table 2: Fine-Net architecture details.

Layer name filter size channels stride upscale activation
Encoder0 7×7 32 2 - LeakyReLU(0.2)
Encoder1 5×5 64 2 - LeakyReLU(0.2)
Encoder2 5×5 128 2 - LeakyReLU(0.2)
Encoder3 3×3 128 2 - LeakyReLU(0.2)
Encoder4 3×3 128 2 - LeakyReLU(0.2)
Encoder5 3×3 128 2 - LeakyReLU(0.2)
UpScale0 - 128 - ×2 -

Concat(w/ Enc4) - 128+128 - - -
Decoder0 3×3 128 1 - LeakyReLU(0.2)
UpScale1 - 128 - ×2 -

Concat(w/ Enc3) - 128+128 - - -
Decoder1 3×3 128 1 - LeakyReLU(0.2)
UpScale2 - 128 - ×2 -

Concat(w/ Enc2) - 128+128 - - -
Decoder2 3×3 128 1 - LeakyReLU(0.2)
UpScale3 - 128 - ×2 -

Concat(w/ Enc1) - 128+64 - - -
Decoder3 3×3 128 1 - LeakyReLU(0.2)
UpScale4 - 128 - ×2 -

Concat(w/ Enc0) - 128+32 - - -
Decoder4 3×3 64 1 - LeakyReLU(0.2)
UpScale5 - 64 - ×2 -

Concat(w/ input) - 64+15 - - -
Decoder5 3×3 3 1 - LeakyReLU(0.2)

Table 3: Margin-Net architecture details.

2 Implementation Details

2.1 Training and testing

Applying the losses LC, LF , and LM each to the Coarse-Net, Fine-Net, and Margin-Net
respectively, we train the entire framework on four Nvidia Titan Xp GPUs (12GB VRAM)
with a learning rate of 0.0001 for two days. We train our framework on the DAVIS dataset [5]
for 300 epochs using the Adam optimizer (β1 = 0.9 and β2 = 0.999), with a batch size of 32.
Our entire framework is written in Python using the Pytorch library.

To produce actual stabilized videos, we apply the Coarse-Net and Fine-Net as moving
average filters. We set the window size N for the Coarse-Net to 15. The window size M for
the Fine-Net is set to 15 as well. For frames near the beginning or end of a video that do not
have enough neighboring frames for the window size, the window is dynamically reduced to
use available adjacent frames.

2.2 Efficient implementation

Reducing repetitive operations. Note that for the Coarse and Fine stabilization, we can
significantly reduce the number of redundant operations. For practical use, we reduce repet-
itive operations by reusing the calculations of the previous frames during the sliding window
operations. The Coarse and Fine-Net operations can also be done in parallel. Details are

Citation
Citation
{Perazzi, Pont-Tuset, McWilliams, {Van Gool}, Gross, and Sorkine-Hornung} 2016



CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION 3

provided in our supplementary document. In summary, to produce one stabilized frame, the
Coarse-Net requires the complexity of O(NM), while the Fine-Net operation takes O(N).
Via our efficient implementation and approximations, we are able to reduce both operations
to O(1).

Computation time. Our approach takes approximately 24.3 ms to stabilize a 480p video
frame (41 fps), where the Coarse-Net operation take 6.1 ms, the Fine-Net 10.5 ms, and the
Margin-Net 7.7 ms. This is approximately ten times faster than offline methods [3]. We ob-
tain optical flow using PWC-Net [6]. The time spent on PWC-Net is included in Coarse-Net
and Fine-Net operations. PWC-Net does not heavily affect real-time performance since we
are using small (64×64) images for flow estimation. 1 Since our network is fully convolu-
tional, modern GPUs can feed-forward our network extremely fast with parallel computing
capabilities. As a result, our method keeps real-time performance even with high-definition
videos. As a result, the time for stabilizing 1080p video (FHD) is 24.7 ms which is almost
identical to process 480p video. The time is measured with a the same workstation described
in Sec. 2.1.

3 Metric computation details
Cropping ratio measures image area after cropping blank margins. Each homography be-
tween the input and result frame for all frames are calculated, and the scale component is
recorded:

Sc =
√

h2
00 +h2

01 ·
√

h2
10 +h2

11, (1)

where Sc represents scale, and h are the elements of the homography matrix H ∈ R3×3. The
scale components are averaged across the entire video frames fi, where i ∈ {1,n}:

CR =
1
n

n

∑
i=1

Sci, (2)

where the CR is cropping ratio. A larger ratio indicates better video quality since it incorpo-
rates less cropping area.

Distortion value measures the anisotropic scaling of the homography between an input
and result frame. Given the resulting video and the corresponding original video, a homogra-
phy is computed between each corresponding frame. The ratio of the two largest eigenvalues
are calculated for the affine part of the homography. The minimum ratio is chosen as the dis-
tortion value:

DV =
n

min
i=1

λ1,i

λ0,i
, (3)

where DV is the distortion value, λ0,i and λ1,i are the first and second largest eigenvalues of
i-th frame computed via the Eigenvalue decomposition of each homographies.

Stability score measures the stability of the transformations by analyzing transformation
profile over the time. For this measurement, two 1D profiles are extracted by each building

1Using rescaled video frames for optical flow estimation has some benefits. (1) It can work for different video
sizes. (2) It can reduce the computational burden. (3) Small videos are often enough to extract essential motion
information from optical flow, as our predicted smoothed flow presented in Fig. ??. The 64× 64 input image be-
comes 1×1×32 feature in the bottleneck of the PWC-Net. This setup naturally enforces global motion estimation,
disregarding motion from small objects. We empirically verify that an image size of 64×64 performs best.

Citation
Citation
{Liu, Yuan, Tan, and Sun} 2013

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018



4 CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION

Figure 1: Reducing computational complexity via modifying the sliding window approach.
The moving average filtering process of the Coarse-Net (and Fine-Net) can be thought of
as the (a) sliding window process. In practice, the parameters computed between adjacent
frames can be reused by adding (or subtracting) to subsequent parameter computations as
shown in (b). The overall illustration of the process is shown in (c) where only one Coarse-
Net operation is needed for every frame, while the Fine-Net can be sparsely computed.

a sequence of the translation and rotation components. The ratio between the sum of lowest
(first to fifth) frequency energies (after Fourier transform where zeroth frequency represents
the zero frequency, DC component) and the total energy is calculated:

St =
∑

5
i=1 ct

i

∑
n
i=1 ct

i
, Sr =

∑
5
i=1 cr

i

∑
n
i=1 cr

i
, (4)

where St and Sr denote energy ratios for translation and rotation profiles, and ci represents
the i-th energy coefficient. Note that the summation for the denominator is up to n, while
any large number would be sufficient. The final score is determined by taking the minimum
of two signals:

SS = min (St ,Sr), (5)

where SS denotes the stability score.

4 Reducing repetitive operations.
Note that feed forwarding must be done 2N = 30 times for the Fine-Net, only after the
Coarse-Net has finished stabilizing all the inputs to the Fine-Net. Thus, a sequential compu-
tation of 2M = 30 Coarse-Net feed-forward operations for 2N = 30 frames must be done, fol-
lowed by 2N = 30 Fine-Net feed-forward operations. Thus, to produce one stabilized frame,
the Coarse-Net feed-forward requires a computational complexity of O(M ·N), while the
Fine-Net operation takes O(N). However, the parameter vector estimated from the Coarse-
Net can be reused via the addition or subtraction of adjacent parameter vectors, as shown
in Fig. 1. Thus, the Coarse-Net need only operates a feed-forward once for every subse-
quent 2N = 30 frame, reducing the complexity of O(M ·N) to O(N). Note that this O(N)
complexity applies only for the initial input buffer for the Fine-Net, and subsequent compu-
tations need only operate a feed-forward once, leading to O(1).

In addition, we can further reduce the Fine-Net operation complexity O(N) to a constant
complexity of O(1)2 by fixing the number of computations within the window. It is not

2The Fine-Net operation is already of constant complexity since N is a constant, but it can be reduced to a
complexity that disregards the value N, leading to O(1).



CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION 5

Figure 2: Visual comparison with a real-
time approach by Wang et al. [7]. The
same content is magnified to show com-
parison of distortion. Our approach
shows less distortion and less zoom-in ef-
fect. Please see our supplementary video
for visual results.

St
ab
ili
ty

D
ist
or
tio
n

Cr
op
pi
ng

Figure 3: Metric evaluation with Adobe
Premiere Pro CC [1] + two recent
approaches proposed by Choi and
Kweon [2] and Yu and Ramamoorthi [9]
on the six challenging categories. Note
that our approach runs real-time (41
frames per second) while others are not
real-time approaches.

necessary to compute all N flow maps, but rather a sparse set of flow maps. For illustration,
three flow maps on each side can be computed and then averaged, as shown in Fig. 1(c). Note
that the Coarse-Net, Fine-Net, and Margin-Net feed-forward operations can be parallelized
as well. Instead of applying the Fine-Net only after the Coarse-Net finishes its operation
for the current frame Ii, the Fine-Net can operate on previous transformed frames (with one
frame lag) as shown in Fig. 1(c), where the same applies to the Margin-Net as well.

4.1 Additional experiments

To understand the visual quality of our results, we present visual examples of the experi-
ment shown in Fig. 2. First, we visually compare our results to the state-of-the-art real-time
method of Wang et al. [7]. The original content are used as reference to compare the amount
of distortion artifacts. Notice that our method closely resembles the original input, whereas
Wang et al. [7] shows shape distortions. Furthermore, we can see that Wang et al. [7] also
introduce blur and the zoom-in effect due to cropping and change in aspect ratio.

We conduct comparisons with a widely used commercial product, Adobe Premiere (Pro
CC 2017), and two recent approaches by Choi and Kweon [2] and by Yu and Ramanmoor-
thi [9]. We first conduct quantitative evaluations on six challenging scenarios from Liu
et al. [3], as shown in Fig. 3. We followed the same experimental protocol of previous
works [3, 4, 7, 8], comparing the commercial product from Adobe Premiere on the chal-
lenging category splits of the dataset. Each category represents challenging videos where
the camera exhibits quick camera motion, zooming, large parallax, and many moving people
at crowded scenes. Even though Adobe Premiere and Choi and Kweon [2]’s approach run
offline, and Yu and Ramanmoorthi [9] takes 570 ms per-frame, our real-time approach shows
favorable results.

Citation
Citation
{Wang, Yang, Lin, Shamir, Zhang, Lu, and Hu} 2018

Citation
Citation
{ado} 

Citation
Citation
{Choi and Kweon} 2020

Citation
Citation
{Yu and Ramamoorthi} 2020

Citation
Citation
{Wang, Yang, Lin, Shamir, Zhang, Lu, and Hu} 2018

Citation
Citation
{Wang, Yang, Lin, Shamir, Zhang, Lu, and Hu} 2018

Citation
Citation
{Wang, Yang, Lin, Shamir, Zhang, Lu, and Hu} 2018

Citation
Citation
{Choi and Kweon} 2020

Citation
Citation
{Yu and Ramamoorthi} 2020

Citation
Citation
{Liu, Yuan, Tan, and Sun} 2013

Citation
Citation
{Liu, Yuan, Tan, and Sun} 2013

Citation
Citation
{Liu, Tan, Yuan, Sun, and Zeng} 2016

Citation
Citation
{Wang, Yang, Lin, Shamir, Zhang, Lu, and Hu} 2018

Citation
Citation
{Xu, Hu, Wang, Mu, and Hu} 2018

Citation
Citation
{Choi and Kweon} 2020

Citation
Citation
{Yu and Ramamoorthi} 2020



6 CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION

(a) (b)

Figure 4: Ablation study on (a) window size for moving average filter M for Coarse-Net,
and N for Fine-Net. [M = 10] indicates only applying Coarse stabilization with window size
10. [M = 10,N = 30] indicates Coarse-Net with window size 10 and Fine-Net with windows
size 30. (b) The different configurations of image transform parameters used for Coarse-Net.
Higher stability and distortion scores are better.

4.2 Ablation study

As an ablation study, we conduct an extensive analysis of stabilization scores when only
the Coarse-Net is used, only the Fine-Net is used, and when both are used with varying
window sizes. The videos used for analysis are the same as the ones used for the quantitative
evaluation. Fig. 4 (a) shows the average stability scores for each setting. The cropping
ratio and distortion values did not have noticeable differences for each setting, and thus we
only show analysis on stability scores. The results convey that using both the Coarse-Net
and Fine-Net leads to better performance. Increasing the window size generally leads to
more stability with slight additive computational complexity. During the process, we found
that taking a global representation of the input frames for the Coarse and Fine-Net leads
to improved stabilization results. Empirically, we found that resizing the frame inputs to
64×64 produces the best overall results.

We also conduct an ablation study among results from different number of transform
parameters from the Coarse-Net. We designed the Coarse-Net to output rigid parameters
(translation, rotation) as well as scale and/or shear. In Fig. 4 (b), the model producing rigid
parameters, scale and shear is denoted as Rigid+Sc+Sh and the model producing rigid pa-
rameters and shear is denoted as Rigid+Sh. These models were each trained by applying
random (bounded uniform distribution) rigid parameters, scale and shear transformations.
The stabilized videos were generated by applying the Coarse-Net with window size M = 30
and Fine-Net window size of N = 30, averaging the scores obtained from videos used in the
quantitative evaluation.

Surprisingly, we observe that the rigid transform performed best in terms of distortion
and stability scores. This suggests that the combination of rigid transformation and the
smooth flow can sufficiently approximate camera motion in the wild. Another view is that
scale and shear parameters may impose excess freedom on stabilization yielding poor sta-
bility. Even though the Coarse-Net utilizes a rigid transform, along with the Fine-Net, it can
successfully handle various scenarios including zooming. We have confirmed its robustness
against various challenging settings including zooming, parallax situations etc. as shown in
Fig. 2, and 3.



CHOI, PARK, KWEON: SELF-SUPERVISED REAL-TIME VIDEO STABILIZATION 7

Figure 5: User study against the warp sta-
bilizer of Adobe Premiere Pro CC. The
comparisons were done on the six chal-
lenging category splits.

4.3 User study
For subjective evaluation, we conduct a user preference test between Adobe Premiere and
our method. We recruited 35 participants with an age range of 23∼ 59, where 23 were males
and 12 females. The participants were asked to evaluate the videos in terms of overall quality,
with an emphasis on stabilization. Fig. 5 presents the results of the user study showing that
our method is more favorable. In particular, our method showed exceptional preferences for
scenes with quick rotations, large parallax, and large crowds. Note that the preferences show
a relatively higher response in favor of Adobe Premiere for the quick zooming category. This
may be due to its content containing quick zoom, where extensive cropping may have been
unnoticeable causing relatively higher response. For an in-depth ablation study regarding
window sizes, please refer to our supplementary material.

References
[1] Stabilize with the warp stabilizer effect. https://helpx.adobe.com/premiere-pro/

using/stabilize-motion-warp-stabilizer-effect.html. Online; accessed 5
Mar. 2020.

[2] Jinsoo Choi and In So Kweon. Deep iterative frame interpolation for full-frame video stabilization.
ACM Transactions on Graphics (TOG), 39(1):1–9, 2020.

[3] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled camera paths for video stabilization.
ACM Transactions on Graphics (TOG), 32(4):78, 2013.

[4] Shuaicheng Liu, Ping Tan, Lu Yuan, Jian Sun, and Bing Zeng. Meshflow: Minimum latency online
video stabilization. In European Conference on Computer Vision (ECCV), pages 800–815, 2016.

[5] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A
benchmark dataset and evaluation methodology for video object segmentation. In IEEE Computer
Vision and Pattern Recognition (CVPR), 2016.

[6] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow
using pyramid, warping, and cost volume. In IEEE Computer Vision and Pattern Recognition
(CVPR), 2018.

[7] Miao Wang, Guo-Ye Yang, Jin-Kun Lin, Ariel Shamir, Song-Hai Zhang, Shao-Ping Lu, and Shi-
Min Hu. Deep online video stabilization with multi-grid warping transformation learning. IEEE
Transactions on Image Processing (TIP), 2018.

[8] Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-Min Hu. Deep video stabilization using
adversarial networks. In Computer Graphics Forum, volume 37, pages 267–276, 2018.

[9] Jiyang Yu and Ravi Ramamoorthi. Learning video stabilization using optical flow. In IEEE Com-
puter Vision and Pattern Recognition (CVPR), pages 8159–8167, 2020.

https://helpx.adobe.com/premiere-pro/using/stabilize-motion-warp-stabilizer-effect.html
https://helpx.adobe.com/premiere-pro/using/stabilize-motion-warp-stabilizer-effect.html

