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In this supplementary document, we report the architectural details of our network and var-
ious additional experiments that we conducted. We deem these experiments to be insightful
and help us to better understand different components of our network.

1 Model Architecture

In addition to the description provided in Section 3 of the main paper, here, we detail the
architecture of the different modules of our proposed audio-visual speech super-resolution
(SR) network.

1.1 Speech Encoder

We convert the raw speech into the linear spectrograms using STFT (as described in Sec-
tion 3.1 in the paper) and concatenate the magnitude and the phase components to obtain
T ×514 dimensions representation. Our speech encoder ingests this representation and pro-
cesses them with a stack of 1D convolution layers as described in Table 1 to generate speech
embeddings (dimension: T ×600).

1.2 Visual Encoder

The visual encoder ingests the input frame sequences of dimension T/4× 3× 96× 96. It
generates visual embeddings of dimension T ×600 using 3D convolution layers as described
in Table 2.
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Table 1: Details of the speech encoder.
Layer # Filters Kernel Stride Residual Output
input - - - - T ×257
conv1 600 3 1 7 T ×600
conv2 600 3 1 X T ×600
conv3 600 3 1 X T ×600
conv4 600 3 1 X T ×600
conv5 600 3 1 X T ×600
conv6 600 3 1 X T ×600
conv7 600 3 1 7 T ×600

Table 2: Details of the visual encoder.
Layer # Filters Kernel Stride Residual Output
input 3 - - - T/4×3×96×96
transpose1 - - - - 3× T/4×96×96
conv1 32 5×5×5 1×2×2 7 32× T/4×48×48
conv2 32 5×5×5 1×1×1 X 32× T/4×48×48
conv3 64 1×3×3 1×2×2 7 64× T/4×24×24
conv4 64 1×3×3 1×1×1 X 64× T/4×24×24
conv5 128 1×3×3 1×2×2 7 128× T/4×12×12
conv6 128 1×3×3 1×1×1 X 128× T/4×12×12
conv7 256 1×3×3 1×2×2 7 256× T/4×6×6
conv8 256 1×3×3 1×1×1 X 256× T/4×6×6
conv9 512 1×3×3 1×2×2 7 512× T/4×3×3
conv10 512 1×3×3 1×1×1 X 512× T/4×3×3
conv11 600 1×3×3 1×3×3 7 600× T/4×1×1
conv12 600 1×1×1 1×1×1 7 600× T/4×1×1
transpose2 - - - - T/4×600×1×1
squeeze - - - - T/4×600
upsample - - - - T ×600

1.3 Speech Decoder

The speech and the visual embeddings obtained are concatenated to form a fused represen-
tation of dimension T × 1200 which is given as input to the speech decoder. The decoder
comprises a series of 1D convolution layers and aims to generate residual mask of dimension
T ×514 as shown in Table 3.

2 Additional Experiments

2.1 Quantitative Evaluation

In addition to the qualitative evaluation on VoxCeleb2 dataset [3], we further assess our
model on the official test set of LRS2 dataset [2]. Note that we do not fine-tune our model
on the LRS2 [2] dataset; thus, evaluating on it demonstrates the generalisation ability of
our model on new datasets (with significantly different pre-processing and image resolutions
used during data collection).
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Table 3: Details of the speech decoder.
Layer # Filters Kernel Stride Residual Output
input - - - - T ×1200
conv1 1024 3 1 7 T ×1024
conv2 1024 3 1 X T ×1024
...
conv13 1024 3 1 X T ×1024
conv14 1024 3 1 X T ×1024
conv15 514 3 1 7 T ×514

Table 4: Quantitative comparison of different approaches at scale factors of 8× and 16× on
LRS2 [2] dataset.
Scale factor 8× 16×
Method PESQ↑ STOI↑ ESTOI↑ LSD↓ PESQ↑ STOI↑ ESTOI↑ LSD↓
Linear 2.201 0.753 0.558 10.771 2.017 0.570 0.318 11.612
TFiLM [1] 2.191 0.768 0.675 7.103 2.042 0.679 0.491 8.623
NU-Wav [4] 2.250 0.761 0.651 7.946 2.005 0.628 0.524 8.711
AO baseline 1.914 0.802 0.692 6.242 1.706 0.701 0.525 8.007
Ours (pseudo) 2.584 0.808 0.702 6.005 2.616 0.739 0.622 6.991
Ours 2.805 0.815 0.725 5.197 2.637 0.766 0.649 5.838

In-line with the results on VoxCeleb2 dataset [3] as shown in Section 4.2.1 in the main
paper, our model performs remarkably well compared to the existing audio-only approaches
as shown in Table 4 on LRS2 dataset [2]. At both the scale factors, our model performs
consistently better, thereby significantly improving the generated speech quality and intel-
ligibility. Also, our pseudo-visual model achieves substantial boost in comparison to all
the audio-only approaches, although neither the pseudo-visual nor the speech SR models
have been fine-tuned on LRS2 data [2]. This demonstrates the robustness and generalisation
ability of our method to different identities and datasets.

2.2 Model’s Variation to Identity Attributes
We analyse the behaviour of our speech SR model on the identity attributes such as gender
and age (from the test set of VoxCeleb2 data [3]) in Table 5. For gender classification, we use
a gender detection tool [5] which automatically groups the identities into male and female
categories. To identify the age of the speakers, we use the public implementation from1.
We can see from Table 5 that our speech SR network is consistent across the different age
groups, but scores do vary slightly across the gender of the identities.

Table 5: Effect of the identity attributes such as gender and age on model’s performance.
Attribute Class PESQ↑ STOI↑ ESTOI↑ LSD↓

Gender Female 2.562 0.740 0.687 5.515
Male 2.520 0.784 0.636 5.504

Age
< 25 2.213 0.776 0.665 5.652

25−50 2.287 0.751 0.650 5.727
> 50 2.271 0.773 0.638 5.452

1https://github.com/yu4u/age-estimation-pytorch
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2.3 Comparison of Pseudo-Lip Identities
We compare the performance of our pseudo-visual model when different static identities
are used for the generation of lip movements. Table 6 shows the results on the test set of
VoxCeleb2 data [3]. We can see that the model’s performance does not vary across the
pseudo-lip identities.

Table 6: Our pseudo-visual model is invariant to pseudo-lip identities.
Identities PESQ↑ STOI↑ ESTOI↑ LSD↓
Taylor Swift 2.237 0.762 0.651 5.500
Paul McCartney 2.218 0.763 0.643 5.618
Barack Obama 2.239 0.758 0.645 5.498
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