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Abstract
In this Supplementary, we provide extensive experiments for evaluation as well as

additional results obtained from our intermediate and final models of TridentAdapt or its
variants.

1 Architecture Analysis
We compare TridentAdapt architecture with related previous methods which are based on
image domain transfer and explain the major differences which lead our approach to outper-
form others. Fig. 1 illustrates how different methods behave when receiving an image from
source domain. In Fig. 1 (a), CyCADA [4] employs a separate source domain segmentation
network to compare prediction consistency before and after domain transfer. However, this
semantic consistency loss could cause the source-to-target translation to be semantically bi-
ased towards source domain since Eseg_s is trained purely on source images. On the contrary,
TridentAdapt computes semantic consistency loss by minimizing feature distances on the
shared and adapted segmentation encoder, which avoids domain-specific bias during image
translation. Moreover, instead of excluding source input image from the segmentation net-
work in CyCADA [4] and BDL [7], TridentAdapt computes segmentation losses for both
source input and source-to-target translated image, thus compensating the lost semantic in-
formation due to the adversarial disturbances during image translation.
Different from CyCADA [4] and BDL [7], for each source input, TridentAdapt introduces
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(a) CyCADA [15] (b) BDL [24] (c) TridentAdapt 

Figure 1: Architectural design comparison between related approaches and TridentAdapt.

Method ro
ad

sd
w

k

bl
dn

g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
g

tr
rn

sk
y

ps
n

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
cy

cl

bc
yc

l

mIoU

Source-only [12] 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

TridentAdapt (stage 1) 90.2 44.7 81.2 34.3 28.6 30.3 35.0 25.1 84.2 31.3 82.9 59.2 28.7 85.2 35.5 33.1 16.3 30.1 27.2 46.5

TridentAdapt (stage 2) 91.3 51.5 86.4 38.8 36.4 42.3 45.4 42.0 86.6 36.4 84.3 67.7 42.8 89.1 41.7 38.2 20.6 40.3 30.7 53.3

Table 1: GTA5-to-Cityscapes adaptation results. we provide class-wise performances of
TridentAdapt in ‘stage 1’ and ‘stage 2’ which are trained with ResNet-101 [3] and
Deeplab-V2 [1] based models.

source-target confrontation by allowing a simultaneous intro-domain reconstruction and cross-
domain image transfer step, which forces domain-invariance on feature level. Most im-
portantly, our architecture design brings two additional benefits in comparison with Cy-
CADA [4] and BDL [7]. First, looping the cross-domain augmentation that is self-induced
back to the encoder (see Fig. 1 (c)) ensures more coherent interaction between domain trans-
fer module and segmentation encoder, resulting in better adapted segmentation model than
CyCADA [4] and BDL [7] which build separate models for translation and segmentation;
Second, learning image recovery together with segmentation from a shared encoder not only
helps to obtain higher segmentation accuracy on class boundary pixels, but also yields bet-
ter quality for image translation as rich semantic knowledge is incorporated. The points
mentioned above are experimentally verified in the Sect. 5 & Sect. 6.

2 Pseudo-label quality
High quality pseudo-label generation triggers more efficient training on target domain. Dur-
ing ‘stage 1’ training of our proposed TridentAdapt framework, although adversarial learning
takes the leading role, the model is still able to benefit a lot from source knowledge because
of our proposed source-target confrontation concept and self-induced cross-domain data aug-
mentation. In Fig. 2, we show through examples that our ‘stage 1’ training helps generate
reliable pseudo-labels with few misclassifications, which provides strong support to ‘stage
2’ training.

3 Detailed information for two-stage training
Table 1 and Table 2 include the class-wise IoU and overall mIoU calculated for ‘stage 1’
and ‘stage 2’ training of TridentAdapt on GTA5-to-Cityscapes adaptation and SYNTHIA-
to-Cityscapes adaptation, respectively. From the tables we can observe that our proposed
source-target confrontation concept as well as self-induced cross-domain data augmentation
brings strong constraints to enforce our shared encoder and the segmentation network to
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Figure 2: Qualitative results of pseudo-labels obtained from our ‘stage 1’ training on GTA5-
to-Cityscapes adaptation. From (a) to (c) are: target domain inputs; ground-truth labels;
pseudo-labels from ‘stage 1’.

produce domain-invariant outputs. Fig. 3 shows some output examples of our source and
target modules during training. As a result of this proposal, ‘stage 1’, which serves as warm-
up phase for training TridentAdapt, obtains 9.9 mIoU gain over source-only model on GTA5-
to-Cityscapes adaptation and improves the source-only model by 10.4 mIoU for the 13-class
setting on SYNTHIA-to-Cityscapes adaptation. ‘Stage 2’ training is thence able to benefit
a lot from this warm-up phase, achieving state-of-art-results on both benchmark datasets for
semantic segmentation. Fig. 4 and Fig. 5 show the mIoU curves of ‘stage 1’ and ‘stage 2’ on
both benchmark datasets with the growth of training iterations. While ‘stage 1’ starts with 0,
the mIoU of ‘stage 2’ training begins with a much higher number based on ‘stage 1’ result.
The mIoU gets further improved with help of the self-training in ‘stage 2’. Interestingly,
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mIoU mIoU?

Source-only [12] 55.6 23.8 74.6 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 - 38.6

TridentAdapt (stage 1) 88.2 49.1 78.4 6.5 0.8 28.2 7.5 17.6 80.9 85.5 50.3 16.0 84.2 42.5 12.0 24.2 42.0 49.0

TridentAdapt (stage 2) 89.5 51.9 79.1 7.3 1.1 34.3 15.2 25.8 80.4 88.0 57.3 19.2 87.5 52.2 18.6 42.1 46.8 54.4

Table 2: Synthia-to-Cityscapes adaptation results. we provide class-wise performances of
TridentAdapt in ‘stage 1’ and ‘stage 2’. mIoU, mIoU? refer to 16-class and 13-class experi-
ment settings, respectively.
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Figure 3: Outputs of our source and target modules during training with respect to source
and target domain inputs (GTA5-to-Cityscapes adaptation). For any given input data (source
or target domain), the simultaneous intra-domain reconstruction and cross-domain transfer
impose confrontational constraints to the shared module, targeting at domain-invariance on
feature level.

 stage 1  stage 2

Figure 4: mIoU curve on the validation set of Cityscapes for GTA5-to-Cityscapes adapta-
tion. The model performance is evaluated every 1000 iterations.

for bicycle class in GTA5-to-Cityscapes adaptation Table 1, source-only model performed
better. The reason is that in this benchmark motorcycle and bicycle classes look visually
similar, which makes the model classify many bicycles into motorcycles under the influence
of cross-domain image transfer.



SHEN, GURRAM, TUNA, URFALIOGLU, KNOLL: TRIDENTADAPT 5

 stage 1  stage 2

Figure 5: mIoU curve on the validation set of Cityscapes for Synthia-to-Cityscapes adapta-
tion based on 16-class setting. The model performance is evaluated every 1000 iterations.

4 Combining with Mixup based data augmentation
methods

We show that TridentAdapt, which is based on adversarial data augmentation, can be com-
patible with other popular Mixup based data augmentation methods [9, 11, 17]. When
trained with those data augmentation techniques, TridentAdapt achieves new milestones
in terms of segmentation performance. To illustrate this, We take the augmentation strat-
egy of DACS [11], the domain adaptive version of Classmix [9] as example and train our
‘stage 2’ model. However, we do not adopt teacher-student training pipeline as presented
in DACS [11]. In TridentAdapt, data mixture needs to be applied on target domain input
xt and its domain transferred version Gs(E(xt)) and acquire images M and M∗, on which
segmentation losses are computed in place of L̂t

seg and L̂t )s
seg . Since source domain input xs

and its target-like version Gt(E(xs)) can be both involved in data mixture, as shown in Fig.
6, two out of four possible augmentations can be available for random pick at each iteration.
Combining adversarial data augmentation and Mixup based augmentation, as presented in
Table 3, our framework reaches 54.2 mIoU for GTA5-to-Cityscapes adaptation. Likewise,
Synthia-to-Cityscapes adaptation reaches 48.5 mIoU for 13-class setting and 56.2 for 16-
class setting, respectively. mIoU curves can be observed in Fig. 7.

Method GTA5 Synthia

TridentAdapt 53.3 46.8 (54.4?)

TridentAdapt + CutMix 53.7 47.4 (55.3?)

TridenAdapt + ClassMix 54.2 48.5 (56.2?)

Table 3: Quantitative study for combining ad-
versarial augmentation of TridentAdapt and
Mixup based augmentation on domain adap-
tive semantic segmentation.

Target Domain

Source Domain

Figure 6: Enumeration of data augmenta-
tions combining adversarial augmentation of
TridentAdapt and Mixup based augmenta-
tion used in DACS [11]
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 GTA5  Synthia

Figure 7: mIoU curves for ‘stage 2’ traning after combining with Mixup based data aug-
mentation technique.

5 Quality comparison of image domain transfer

In the main paper we claimed that, rather than building separate modules for segmenta-
tion and image translation, learning image translation by sharing the segmentation encoder
and creating self-induced loop can ensure more sufficient mutual refinement between en-
coder and the generator, thus yielding higher image quality as rich semantic knowledge is
incorporated. Here we evaluate images generated from CycleGAN [18] (the basic building
block of CyCADA [4] and TIR [6]), BDL [7] and TridentAdapt. Since other approaches
only involve source-to-target translation into training, for fairness we compare semantic seg-
mentation models that are trained on target-like GTA5 images and validated on Cityscapes
validation set. As shown in Table 4, training with TridentAdapt source-to-target translated
images leads to a segmentation model of 44.5 mIoU, outperforming the corresponding re-
sults of CycleGAN [18] and BDL [7]. Therefore, we conclude that TridentAdapt’s image
translation training pipeline incorporates more task-specific information into generator out-
puts, thus improving image quality over existing methods adopt separate networks for image
translation and semantic segmentation. Qualitative visual comparison is presented in Fig. 8.

Translation Model mIoU ∆

Source-only (ours) 31.5 -

CycleGAN (S2T) 39.3 +7.8

BDL [7] (S2T) 42.7 +11.2

TridentAdapt (S2T) 44.5 +13.0

Table 4: Quantitative comparison
of source-to-target image transla-
tion results for domain adaptive se-
mantic segmentation.

Figure 8: comparison of image translation re-
sults. From top to bottom: input, CycleGAN,
BDL [7] and TridentAdapt output.

Even though our source-to-target translated images show superiority over other methods
on target domain when utilized sorely to train a segmentation model, we still believe that
involving original source domain data for training can help compensate the lost semantic
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Method TridentAdapt_S2T TridentAdapt_S2T + S TridentAdapt_S2T + Pseudo TridentAdapt_S2T + S + Pseudo

mIoU 44.5 45.0 50.3 50.7

Table 5: Synthia-to-Cityscapes adaptation results. Ablation study of training a segmenta-
tion model on target-like source data with or without source data and pseudo-labelled target
images.

information due to the adversarial disturbances during image translation. To this end, we
conducted ablative experiment and present our findings in Table 5. It can be observed that
involving original source domain image for training imroves mIoU of the target-like-only
model from 44.5 to 45.0. On the other hand, assisting the target-like-only model by training
with its derived pseudo-labels on target domain dataset brings a larger improvement from
44.5 to 50.3. However, training with them all achieves obtains 50.7 mIoU. Therefore, we
conclude that original source domain data should not be neglected for training even if we
have an image translation model that produces high image domain transfer quality. And
pseudo labels are always helpful for further improvement.

6 Comparison with SOTA methods based on image
domain transfer

Now we compare domain adaptive semantic segmentation performance among TridentAdapt
and relevant works, and analyse the superiority of TridentAdapt over others. In Fig. 10, we
visually demonstrate the performance of TridentAdapt for domain adaptation by including
additional segmentation results on Cityscapes validation set. Qualitatively, We compare Tri-
dentAdapt results with source-only model, BDL [7] and TIR [6]. Interestingly, we can ob-
serve in Table 6 that, TridentAdapt outperforms other methods in preserving class boundaries
(metric presented in Fig. 9) for semantic segmentation, obtaining 37.59 mIoU for predicting
correct semantic edges. We believe that this is owing to our image recovery based training
strategy, such that the learned knowledge in our generators for reconstructing image edges
will be reflected on the shared encoder and force the segmentation module to better preserve
edge or class boundary pixels in segmentation maps.

Methods overall edges non-edges

source-only 31.5 22.9 38.4

BDL [7] 48.5 31.3 56.7

TIR [6] 50.2 35.0 59.7

TridentAdapt 53.3 37.6 63.1

Table 6: Quantative results of GTA5-to-
Cityscapes adaptation between source-
only; BDL [7]; TIR [6]; TridentAdapt
on overall segmentation mask, around se-
mantic edges and non-edges regions.

Figure 9: Visual representation of semantic-
edges (bottom-left) and non-edges (bottom-
right) region. The 1st row displays the RGB
image (top-left) and respective semenatic seg-
mentation mask (top-right).
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Figure 10: Additional qualitative results of GTA5-to-Cityscapes adaptation on Cityscapes
validation set. For each group, the upper row; From left to right: target domain input image;
their segmentation ground-truth labels; predictions of source-only model; BDL [7]; TIR [6];
TridentAdapt and the lower row; the error map of their respective approaches. The error map
displays only the segmentation class for wrongly labeled pixels and black mask for correct
predictions.
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7 Analysis on edge-preserving in image reconstruction loss

In the paper, our motivation for up-weighting the sobel edges in reconstructed images is to
compensate the pixel information that are lost due to maxpooling operators in the backbone
encoder. To investigate how up-weighting the edges in the reconstruction loss could affect
the performance of TridentAdapt, we plot an ablative study for ‘stage 1’ mIoU by changing
the weight for edge pixels in our image reconstruction loss (see Fig. 11), and empirically we
find that setting the weight to 0.5 produces the best result.
In addition, we also consider to preserve segmentation edges instead of sobel edges for
image reconstruction. In this case, since no ground truth for target domain is available,
meanwhile segmentation edges for adapted predictions on target domain are not accurate
enough to be considered (see row 2 of Fig. 12), we only take segmentation edges from
source domain for computing image reconstruction loss. However, training ‘stage 1’ with
help of source segmentation edges gives 46.3 mIoU, which does not outperform our sobel
edge setting. One reason is that lots of segmentation edge pixels are overlapping with sobel
edges, thus having similar effect for edge preserving. Another reason is that the source
domain segmentation edges are overly fine-grained, such that some unwanted semantic edge
information are incorporated into image reconstruction phase, bringing some disturbances
which counteract the benefits brought by using the segmentation edges. (See circles on road
and sidewalk region of source edge map in Fig. 12)

Figure 11: Ablation study for up-weighting the sobel edges in the reconstruction loss

Figure 12: Visualization of semantic edges and sobel edges. First row from left to right:
source domain input, segmentation ground truth, segmentation edge map, sobel edge map;
Second row from left to right: target domain input, target segmentation prediction, segmen-
tation edge map, sobel edge map.
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8 Discussion

Why does TridentAdapt outperform other image translation based methods for do-
main adaptation? First, image-to-image translation models in existing approaches [2, 4,
6, 7, 8, 16] are trained based on CycleGAN [18] settings, which adopt different encoders
and decoders for forward and backward translations. However, for the purpose of domain
adaptation, image-to-image translation can be more properly explored with source-target
confrontation concept. Therefore, in TridentAdapt all input images are passed to a shared
encoder. In this way, for each input we are able to introduce an intro-domain image recovery
step(i.e., self-reconstruction) and a cross-domain image transfer step, thus placing confronta-
tional constraints on the encoder to force domain-invariance on feature level. However, this
cannot be achieved following CycleGAN training settings.
Second, the above approaches seek to build separate networks for image translation and se-
mantic segmentation purposes, where domain transfer modules and segmentation encoder
do not act appropriate constraints on each other, thus lacking coherent sufficient interaction.
Therefore, the potential of image translation is not fully explored to support domain adap-
tive semantic segmentation. TridentAdapt tackles this by sharing the encoder of semantic
segmentation network with image translation networks, thus conveying the learned semantic
knowledge into image translation step to acquire better generators Gs and Gt . The improved
generators will, in return, produce stronger confrontational constraints to the shared encoder.
Moreover, better quality outputs from generators can well support the subsequent steps.
Third, the trident-like design enables self-induced cross-domain data augmentation on-the-
fly in a forward pass. This means, for each input there will be an extra domain transferred
version that is utilized for segmentation sharing the same label (or pseudo-label). The cross-
domain views augmented by both generators are proven to further contribute to domain gap
reduction. In previous approaches, however, only source-to-target translated images pro-
duced by a separated generator network are considered into training. With TridentAdapt,
we confirm experimentally that target-to-source transfers can also be beneficial to domain
adaptation by widening input data coverage on domain level.
Does the trident-like design of TridentAdapt introduce large computational complex-
ity for training? The computational complexity that is introduced in TridentAdapt is en-
durable in comparison with previous approaches which either involves depth modality for
training [13], or constructing a teacher module which has the same amount of parameters
as the student [11]. It can be observed in Table 7 that our generators and discriminators are
relatively smaller networks compared to the backbone encoder and segmentation network.
Therefore, the major computation costs are on E and Φ. Additionally, since we do not use
separate encoders for image translation, if trained on the same backbone, our architecture ac-
tually has less total parameters than conventional image translation based approaches which
have to build additional image encoders for both domains. In fact, the inference model after
training is the same for all SOTA approaches if the same backbone is adopted. Hence, com-
putational complexity has no impact on the final models.
What else can be investigated to improve TridentAdapt? First, to achieve our design
purpose, we assume that our source and target modules should be effective enough for ap-
proximating domain data distributions. Therefore, seeking better discriminator solutions
will enforce our generators to output higher fidelity cross-domain transfer results, yielding
stronger constraints regarding source-target confrontation as well as inducing higher quality
cross-domain augmented views. To this end, a recent work proposing UNet based discrimi-
nator [10] which gives pixel-wise judgement of image realism can be interesting to try. Other
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Sub-modules E +Φ Gs Gt Ds Dt

params. 44.6 M 5.11 M 5.11 M 8.27 M 8.27 M

Table 7: Number of trainable parameters (millions) for each sub-module in TridentAdapt.
We adopt ResNet-101 [3] for E and Deeplab-V2 [1] for Φ.

than that, relativistic discriminator loss [5] has shown promising outcomes when applied to
image super-resolution tasks [15], and can also be a helpful building block for TridentAdapt.
Second, the design of TridentAdapt seeks to learn a encoder which maps each input to a
shared feature space to reduce the domain gap. Adversarial learning is taking the leading
role in this process. However, TridentAdapt is not supposed to create a structured feature
space whose class-wise spatial regions are discriminative among each other. This is the rea-
son for the vagueness between motorcycle and bicycle classes. To resolve this, pixel contrast
loss [14] is a good option for future experiments.

9 Limitation
Synthia dataset has been considered as a more challenging dataset for domain adaptive se-
mantic segmentation. Although our TridentAdapt framework shows promising results on
Synthia-to-Cityscapes adaptation in comparison with prior works, we would like to briefly
analysis why there is a performance gap between adapted results using GTA5 and Synthia
dataset. As shown in Fig. 13 (a), Synthia dataset contains training images with various
weather, illumination and camera pose&distance changes. In image-to-image translation,
datasets like this are often considered for multi-domain setting, however, for domain adap-
tive segmentation these images are considered as a single source domain, which makes it
quite challenging for the network to learn what kind of domain specific information should
be incorporated into the image translator. Therefore, in some cases, image-to-image transla-
tion modules fail to capture the correct cross-domain mapping. For example, in Fig. 13 (c),
when an image of low visibility is translated into target domain using our Gt , the rider and
bicycle are hidden into the road pixels, which does not bring benefit to semantic segmen-
tation. Moreover, as Fig. 13 (b) shows, the Synthia class distribution in the label map is
quite different from that of Cityscapes which are closer to GTA5 (e.g, less pedestrian pixels
in a single image). Therefore, for TridentAdapt which is trained based on image translation,
adapting Synthia as source domain to Cityscapes is more challenging than doing it for GTA5.

10 Outlook
We believe that the TridentAdapt design is highly flexible and can be incorporated on a
broader range of tasks such as domain adaptation for virtual-to-real depth estimation and
day-to-night perception.
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(a) Training samples 

(b) Label map distribution (c) Domain transfer failure case

Figure 13: Examples of training images with various challenging conditions from Synthia
dataset, which poses large difficulty for learning image domain transfer.
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