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1 Detailed Diagrammatic View of our Approach
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Figure 1: (A) Complete overview of our approach. We depict training process at the second incre-
mental step. The model MMM222 is initialized with the weights of MMM111 and its weights are kept trainable.
Augmentation module is explained in detail in Figure 2. (B) To update the exemplar memory, we
remove samples from Dexemplar

0 , and select new samples from new class data, D1. Thus, Dexemplar
1 is

obtained after this update step which is used along with Daug
1 and D2 to train MMM222.
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2 Image Warping Augmentation
Figure 2, describes the image warping and in-painting operations which are used as an aug-
mentation technique and are applied on the input images of animal pose data. The limbs of
horse in Figure 2 (c) are rotated by a small angle using Thin Plate Splines (TPS Module).
We then perform image in-painting to fill in the pixels with no values.

The proposed augmentation when applied to samples from the exemplar memory helps
in creating diverse poses. This eventually mitigates class imbalance between new class data
and exemplar memory during the training at each incremental step. Figure 3 demonstrates
samples generated using this augmentation technique.

(i) Input Image (ii) Output After Image Warping (iii) Final Output Image

Image In-painting

TPS Module

Blue:  Input control points 
Red: Output control points

Warping the grid space to match
input and output control points

TPS
Module

Rotation

Input control points
(GT pose labels) Output control points

(a) (b)

(c)

Figure 2: Overview of Image warping and in-painting augmentation. (a) Ground truth pose
labels are taken as Input control points, we rotate these keypoints by a small angle under
skeletal constraints for each animal to get the Output control points, (b) TPS warps the image
grid space to match the input and output control points, (c) We show steps of the proposed
augmentation technique (i) For demonstration we only rotate the left frontal leg of the horse,
cyan dots represent the original keypoints and red dots represent the rotated keypoints, (ii)
After TPS warping, we get the rotated left front limb, (iii) Final output image is generated
after applying image in-painting.
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(a) Before Augmentation (b) After Augmentation

Figure 3: The images in (a) are before augmentation, images in (b) are after image warping
and in-painting augmentation applied to respective images in (a).
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3 Proof for “RBF is positive semi-definite”
The Radial Basis Function, FRBF(x,y), when x, y are real numbers, is given as

FRBF(x,y) = exp(−‖x− y‖2

2σ2 ) (1)

Without the loss of generality, we can assume that σ = 1. We can further, write FRBF(x,y) =
h(x− y), where

h(t) = exp(− t2

2
)

= exp(0(it)+1/2(1)2(it)2),

(2)

here i denotes iota.
Let’s assume that Z is a random variable where Z ∼ G(0,1), G is the Gaussian distribu-

tion. and we know that moment generating function for Gaussian distribution can be written
as,

MZ(x) = exp(µx+(σ2x2)/2) (3)

From Eq. 2 and Eq. 3 we get,

h(t) = MZ (it)

= E[eitZ ]
(4)

Any m×m matrix A is positive semi-definite if,

vvvT Avvv≥ 0, ∀v ∈ Rm (5)

Thus, for real numbers x1,x2, ...xn and a1,a2, ...an, a quadratic form of FRBF , would be

n

∑
j=1

n

∑
k=1

a jakFRBF(x j,xk) =
n

∑
j=1

n

∑
k=1

a jakh(x j− xk) (6)

Thus it is sufficient to prove that,

n

∑
j=1

n

∑
k=1

a jakh(x j− xk)≥ 0 (7)

Therefore,

n

∑
j=1

n

∑
k=1

a jakh(x j− xk) =
n

∑
j=1

n

∑
k=1

a jakE[ei(x j−xk)Z ]

= E[
n

∑
j=1

n

∑
k=1

a jeix jZake−ixkZ ]

= E[|
n

∑
j=1

a jeix jZ |2]≥ 0,

(8)

This entails that the Radial Basis Function FRBF is positive semi-definite, and thus a kernel.
Without loss of generality, the same proof can be extended when x and y are vectors.
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4 Baselines

Adapted-iCaRL: At each incremental step i, we first concatenate the exemplar memory
and the new class(es) training data,

D←Dexemplar
⋃
Dnew (9)

where Dexemplar consists of old classes, i.e. C0
⋃

C1...
⋃

Ci−1 and Dnew consists of the new
classes which the model has to learn, i.e. Ci. Thus, D consists samples from the entire set,
C0

⋃
C1...

⋃
Ci

We use the following loss function for the training procedure.

L= α ∗Σ(x j ,y j)∈Dexemplar
MSE(Mi−1(x j),Mi(x j))+(1−α)∗Σ(xk,yk)∈Dnew MSE(Mi(xk),yk)

(10)
where α is an hyperparameter in the loss function, we set α = 0.5 for all the experiments.

We use the herding strategy to sample the exemplar memory, similar to what was used in
the original implementation of iCaRL.

Adapted-EEIL: At each incremental step i, we first train the model similar to Adapted-
iCaRL’s training step, which comprises of the data from exemplar memory and the new
class(es) data. After this step, we perform additional balanced finetuning, as done in EEIL [2].
This balanced finetuning is performed on a training subset containing equal number of sam-
ples for each class. This is done by sampling n samples for the new class data, D′new, by
using the Herding strategy. We use the model in the training step performed before balanced
finetuning step, M′i , as the teacher network for the Knowledge Distillation loss term. The
weights of this model are frozen and it’s predicted heatmaps are used for loss calculations.
The updated loss term used for this step is given as,

Lold = α ∗Σ(x j ,y j)∈Dexemplar
MSE(M′i(x j),Mi(x j))+(1−α)∗Σ(x j ,y j)∈Dexemplar

MSE(Mi(x j),yk)
(11)

Lnew =α ∗Σ(xk,yk)∈D′new
MSE(M′i(xk),Mi(xk))+(1−α)∗Σ(xk,yk)∈D′new

MSE(Mi(xk),yk) (12)

L= Lold +Lnew (13)

where α is an hyperparameter in the loss function, we set α = 0.5 for all the experiments.
After the balanced finetuning step, we update the exemplar memory by removing samples

from the exemplar memory, and adding samples for the new class.

5 Hyperparameter details

A list of hyperparameters used in this work is provided in Table 1.

Citation
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Hyperparameters Value
Input Image Size 512x512

Output Heatmap Size 128x128
Base Model Training Epochs 30

Base Model Optimizer Adam
Base Model Learning Rate 0.0001

Batch size for training Base Model 13
Incremental Model Training Epochs 20

Incremental Model Optimizer Adam
Incremental Model Learning Rate 0.0001

Batch Size for training Incremental
Model 5

Balanced Finetuning Training Epochs
(Adapted EEIL) 5

Balanced Finetuning Optimizer
(Adapted EEIL) Adam

Balanced Finetuning Learning Rate
(Adapted EEIL) 0.00001

Batch Size for Balanced Finetuning
(Adapted EEIL and iCaRL) 5

α (Adapted EEIL and iCaRL) 0.5
Table 1: Hyperparameter details used in this work.

6 Additional Experiments

We perform additional experiments on a different setup, i.e. growing memory case, where
the number of samples per class remains fixed. We perform experiments in such a scenario
to further demonstrate the efficacy of our approach. We restrict ourselves to 10% of samples
for each class. The results are shown in the Table 2. We observe that our proposed DPP
w/ clustering performs significantly better than the Random and Herding strategy baselines.
Further, our proposed RBF k-DPP (γ = 50) improves the performance on DPP w/ clustering.

Approach Incremental Steps
1 2

Oracle 0.8478 0.8457
Herding 0.7513 0.6626
Random 0.7982 0.7259

DPP w/ clustering (Ours) 0.8245 0.7613
RBF k-DPP (γ = 50)

(Ours) 0.8291 0.7799

Table 2: PcK@0.05 results for Growing memory (fixed number of samples per class), base
classes are {‘cat’, ‘dog’, ‘cow’} and ‘horse’ and ‘sheep’ are added at the incremental steps.
10% of each class data is added to the memory.
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Figure 4: Details of image data pre-processing pipeline. (a) Input Image, (b) we select only the
object of interest (animals in our case) as an input to the model, (c) if the selected object of interest
has rectangular bounding box we directly extend it or pad zeros to make it a square shaped box and
then crop it out, (d) we finally perform various augmentations like flipping, adding noise, rotation and
combinations of these.

7 Dataset Pre-Processing
Given an image, which may contain multiple animals in it, we crop out each animal using
the ground-truth bounding boxes provided with the dataset. These bounding boxes can be
rectangular in shape. In order to explicitly convert them to a square bounding box, we extend
the smaller side of the rectangle to make it a square. However there can be an edge case,
where while extending the bounding box we may exceed the image boundary region. To
overcome this problem, we pad the image with zeros and then extend the smaller side of
rectangle to make it a square. After getting a square shaped crop of the animal image, we
resize it to a fixed image size across all the input images. We further augment the data
by Flipping, adding Gaussian Noise, Rotating the images by a small random angle, and a
combination of these augmentation strategies. These augmentations helps to increase the
training set size and act as a regularizer to reduce overfitting in our pose estimation model.
An overview of the data pre-processing pipeline is provided in Figure 4.

8 Visualization
We provide visualization of some pre-processed samples and their ground-truth keypoints
labelled in Figure 5. Red points in the figure show the ground-truth keypoint label. There
are total 17 keypoints labelled for each image, namely two ‘Eyes’, two ‘Earbases’, ‘Nose’,
four ‘Elbows’, four ‘Knees’ and four ‘Paws’.

As explained in the main draft, the ground-truth keypoints are converted to Gaussian
heatmaps to assist in training the pose estimation model. To generate the Gaussian heatmaps
we center each keypoint on the spatial coordinates of the keypoint. A visualization of the
input image and the summation of the heatmaps for all the keypoints is provided in the
Figure 6.
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(a) (b) (c)
Figure 5: Visualization of animals and their keypoints labelled.

Figure 6: The images in (a) are the input images for various classes of animals from Animal-
Pose Dataset [1]. The images in (b) are Summation of all the 17 heatmaps of the keypoints

Citation
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{Cao, Tang, Fang, Shen, Tai, and Lu} 2019
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