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1 Efficacy of our pseudo-dataset across different Object
Detection Methods

We investigate the efficacy of our generated pseudo-dataset (D̂) obtained from Pascal trained
Faster-RCNN network with Resnet-34 backbone. We train different state-of-the-art detection
models on our pseudo-dataset. Particularly, we evaluate on Faster-RCNN with FPN [1],
YOLO [4], FCOS [7] and RetinaNet [2].

Object Detection Methods
Original dataset (D)

(Pascal) Our Pseudo-dataset (D̂)

mAP
(Upper Bound)

mAP
(training from scratch)

Faster RCNN [5] 70.1 50.9
Feature Pyramid Network [1]

(Faster-RCNN) 70.7 50.6

Yolo V3 [4] 69.2 41.1
FCOS [7] 64.0 46.8

RetinaNet [2] 71.3 51.3
Table 1: Performance (in %) with our generated samples using different state-of-the-art approaches
for the object detection task in the complete absence of the Pascal dataset. The models are evaluated
using the Pascal VOC convention style.

1. Feature Pyramid Network (FPN) is often used in addition to the Faster-RCNN
model to obtain better feature representations for object detection task. It combines
features in bottom-up pathway to yield high-resolution features and top-down path-
way to yield low-resolution features. Our pseudo-dataset was not synthesized to deal
with such a setup. As shown in Table 1, we obtain 50.6% mAP which is very close
to the network trained on Faster-RCNN. This implies that our pseudo-dataset is even
applicable to the networks that perform different modifications at the feature level.

2. YOLO: We use YOLO-v3 for our experiments. Note that, unlike Faster-RCNN,
YOLOv3 is a single stage network. As evident in Table 1, we achieve 41.1% mAP
even though the pseudo-dataset was generated using Faster-RCNN. This implies that
our pseudo-dataset is generalizable to one-stage methods.
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3. FCOS is a single stage object detector like Yolo. But it predicts on per pixel basis
unlike anchor based methods like Yolo. We obtain 46.8% mAP using FCOS.

4. RetinaNet is also a single stage object detector but uses Focal loss i.e. a modified
version of the Cross Entropy loss, that helps to overcome the foreground and back-
ground class imbalance problem. We obtain decent mAP of 51.3% which shows that
our generated data facilitates training of detection model with any additional losses.

Despite methodological and architectural differences, we obtain respectable performances
(≈ 41− 51% mAP) in Table 1 while training the network from scratch with our pseudo-
dataset (D̂) using different detection methods. These observations emphasize that D̂ reason-
ably estimates the training data distribution and is applicable to different object detection
methods in the absence of training data.

2 Result Analysis and Discussions
In this section, we briefly analyze the results and discuss our observations that we found
based on the experiments across architectures and datasets.

Convergence: Unlike existing data-free works such as [3, 8] takes large iterations and longer
time for generation. On the contrary, each batch in proposed Algorithm 2 in the main draft
converges within 100 iterations for even large scale datasets like COCO.

Other Losses: In order to further improve the distillation performance, we even tried to
use other well-known natural image priors like Total variation [6] and L2 regularizer to gen-
erate natural-looking Multi-Object Impressions (MOIs). But we observed that such losses
though are helpful in improving visualization of samples but do not yield improvement in
mAP. Sometimes, it even leads to lower performance during distillation. We also observed
that learning rate (lr) is a crucial hyperparameter whose careful tuning can lead to the gener-
ation of a better transfer set. Infact, we found that only tuning of lr works better than using
such additional losses. Please refer to section 5 for experimental results and more details.

Beyond transfer set: In order to further study how well our pseudo-dataset has captured
the training data distribution, we use our generated data to train the network from scratch.
From Table 1 in the main draft, we can observe that we obtain a decent performance of
57.8% mAP on KITTI, even when Resnet-18 is trained from scratch using MOIs. More-
over, we obtained similar respectable performances even in the case of complex and large
scale datasets like Pascal and COCO. In the case of Pascal, (as shown in Table 2 in main
draft) VGG-16 and Resnet-34 networks obtains 49.3% and 50.9% mAP while training them
with our MOIs with no Teacher assistance. Similarly, (Table 3 in main draft) with no KD,
we observed reasonable performance of 30.9% mAP on evaluation using COCO@0.5. The
summarized results across datasets and architectures while training the network from scratch
with our generated datset (D̂) is put in Table 4 in the main draft. Also, our pseudo-dataset
is even suitable to be used as augmentation when arbitrary data or few training samples are
present (shown in Table 5 in main draft). Moreover, we obtain reasonable performances
across different detection methods (Sec. 1). Thus, our novel pseudo-dataset synthesizing
framework can have a lot of practical utility. These observations show that our generated
data has even the potential to be used beyond a transfer set for distillation, such as training a
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network from scratch. Such insights are important and currently missing in existing data-free
methods which requires further investigation.

Performance Analysis: We analyze both the stages of our generation strategy : generation
of pseudo-targets and generation of MOIs.

To analyze the first stage, we replace our pseudo-targets with original training data
ground truths. In other words, we use label information from the training data like the
position, size, and class label of an object rather than actual objects in the images and then
generate impressions corresponding to them. We observed only a minor gain in performance,
which shows our prepared pseudo-targets reasonably capture the label distribution of training
data. More details are in section 4.

Next, we analyze stage two which deals with generation of MOIs. Since neither the
training data nor its statistics are assumed to be available, there always exists a domain
gap between our generated data and original training data. We tried to reduce this gap by
better initialization i.e. initializing MOIs with textures rather than random initialization. The
original training data is independent of the architecture. But our generated MOIs depend on
the Teacher architecture. To decouple the MOIs from the Teacher, we use differential batch
augmentation which makes them more robust and hence results in improved performance.

3 Motivation for Power Law distribution

As discussed in Algorithm 1 (in the main draft), the maximum number of possible objects
in any sample is denoted by M. While preparing the target labels, the number of objects
for each sample (denoted by Ni for ith sample) is uniformly sampled between 1 to M. For
simplicity, we restrict our discussion of objects’ size with respect to a particular sample and
use N to denote the number of objects belonging to that sample. The minimum and maxi-
mum possible object sizes obtained using the information of anchor scales are denoted by
Amin and Amax respectively. This implies that the sizes of each object need to lie in the range
[Amin,Amax].

Uniform Sampling (U(Amin,Amax)): An intuitive strategy for deciding objects’ size is to
uniformly sample each object size from the range [Amin,Amax]. If one of the sampled ob-
ject sizes is very large (close to Amax), then it would result in high overlaps while placing
other objects. In extreme cases when N is large, it may end up with most of the objects con-
tained inside another object. Therefore, with such a strategy it will be difficult to satisfy the
IoUthreshold constraint. The major reason for high overlaps is that there is no restriction on
the object sizes and each object can be as large as Amax. In order to overcome this problem,
we need to enforce a constraint on Amax.

Constrained Uniform Sampling (U(Amin,min((W ·H)/N,Amax))): One way to enforce the
constraint on Amax is to have maximum object size as A

′
max ← min((W ·H/N),Amax) which

is fixed for all the objects in a sample. W and H denote the width and height of the sample
respectively. Since each object’s maximum size is same and reduced to A

′
max , this would help

in placing the objects within the IoUthreshold constraint. By putting such restrictions on the
maximum object size where A

′
max becomes small with a large value of N, objects of small

sizes are more favoured.
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Interval based Uniform Sampling: In order to explicitly enforce the favoring of large ob-
ject sizes and reduce biases towards the small sizes, we can adopt a interval based uniform
sampling strategy (U(max(Amin,(W ·H)/(N + 1)),min(W ·H/(N),Amax)). For e.g., when
N is 1, the interval can be used to allow objects of large sizes. Similarly, for N = 2, the
object sizes can be sampled in the interval [max(Amin,(W ·H)/3),min((W ·H)/2,Amax)] and
so on. We can perform uniform sampling on each of these intervals. The problem with this
strategy is that the objects are sampled within a particular interval for a fixed value of N and
the probability of objects belonging to another interval for the same value of N is zero. That
means the small and large sized objects cannot be sampled together for a particular value of
N. The power law overcomes this problem by allowing objects of small and large sizes to
occur together with some probability.

The power law is defined as:

P(x;ao) = aoxao−1,0≤ x≤ 1,ao > 0 (1)

Let sampling from power law be represented by : x ∼ P(ao). The mean of the power law
distribution is given by

ao

ao +1
.
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Figure 1: The Power Law distribution with ao = 10. x = 0 represents Amin and x = 1 rep-
resents A

′
max . The red dot represents the mean of the distribution which is favouring areas

closer to A
′
max .

Power Law with fixed ao : The power law distribution defined using ao is used to sample
x which lies between 0 to 1. The sampled x is rescaled to interval [Amin,A

′
max ] where A

′
max

is min((W ·H)/N,Amax)]. We assume that ao is fixed. This would imply that the mean of
the distribution is also fixed. Thus, the majority of the sampled objects’ sizes lie around the
mean (as shown in Figure 1. When ao = 1, it is same as constrained uniform sampling which
favours small areas. While on the other hand, for a large value of ao, mean is very close to 1
which leads to negligence of small areas. This observation motivates to have a variable ao.

Power Law with variable ao: Our proposed Algorithm 1 (in the main draft) defines ao

as the ratio
M
N

for a particular sample. For different values of ao, the distribution curves
is shown in Figure 2. For N = 1, ao = M which allows sampling large objects’ sizes with
high probability and small objects sizes’ with low probability. As the value of N increases,
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Figure 2: Power Law distribution for different values of ao. As the value of ao decreases to
1, the distribution gradually switches to Uniform distribution.

we prefer sampling of small sized objects. When N = M, ao = 1, it is same as constrained
uniform sampling. Since it overcomes the limitations of previous strategies, therefore, we
use our proposed, variable ao based power law distribution in Algorithm 1 (in the main draft)
to define the object sizes for the target labels.

4 Distribution of objects in prepared Pseudo-Targets
Comparison of prepared pseudo-targets and Pascal labels with respect to the distribution of
the object sizes is shown below:
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Figure 3: Histogram plot of object sizes
and their frequency on our prepared
pseudo-targets.
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Figure 4: Histogram plot of object
sizes and their frequency from the Pascal
Dataset

From Figure 3 and 4, we can observe that in the absence of any prior knowledge of
the training data, our pseudo-data obtained using Algorithm 1 (in the main draft) is a good
approximate for training label distribution. More precisely, the distribution of object sizes of
pseudo-targets using the Power Law distribution and anchor information (ratios and scales)
of the Teacher network reasonably captures the training data distribution of object sizes.
However, we do observe that we have low count of large sized objects. This may be due to
the fact that our MOIs are of fixed 600× 600 dimension. Next, we empirically investigate
the effect of prior knowledge of the training label distribution on the distillation performance
of the Student model.
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Zero-Shot Distillation Without AI (mAP in %) With AI (mAP in %)
Resnet 34→ Resnet 34 54.88 55.11

Table 2: Distillation using our pseudo-dataset where MOIs are generated without and with
additional information (AI). AI is the prior knowledge about the class label, size and location
of the objects in the samples of training data (Pascal). Note that the number of samples gen-
erated is equal to number of samples in the Pascal training dataset for which the prior label
information is available. Thus, K is taken as 5011 for both with and without AI experiments.

As shown in Table 2 , we gain only slight improvement in distillation performance even
if the class label, object sizes and their locations on training data are known apriori. This
shows that our prepared pseudo-targets reasonably estimates the label distribution of the
training data (when only the pretrained model and not the training data is available).

5 Experiments with other losses for crafting MOIs

Mask Total Variation Loss (Lmtv): If we directly apply the total variation loss [6] on MOIs,
it can also blur out the texture background which is not desired. So, we apply it on the mask
which is the difference between the current optimized MOI and initialized MOI. This loss
makes the generation of MOIs less sensitive to learning rate and optimization easier by re-
taining the smoothness. But we do not observe any improvement in mAP while performing
distillation from Resnet-18 Teacher trained on KITTI to Resnet-18-half with 2500 generated
samples using this additional loss (shown in Table 3). By only carefully tuning the learning
rate (lr) without using this loss, we observe better performance. However, this loss can give
improvement in mAP in cases when the lr is set high (shown in Table 4). But we can clearly
observe from Table 3 and 4, that MOIs synthesized with only Lgt loss and no Lmtv loss yields
better performance when tuned with proper lr.

Loss mAP (in %)
Lgt 27.2
Lgt +Lmtv 20.9
Lgt +0.1 ·Lmtv 24.7

Table 3: Distillation when MOIs
generated with lr 0.01

Loss mAP (in %)
Lgt 15.5
Lgt +Lmtv 20.5

Table 4: Distillation when MOIs
generated with lr 0.1

6 Visualization of Multi-Object Impressions (MOIs)

Some of the generated samples obtained using Resnet-34 Teacher trained on Pascal dataset
are shown below. For each sample we have shown the pseduo-targets, background texture,
MOIs with and without background. We use additional regularization to highlight the fore-
ground regions for better visualization. Even though no explicit loss like batch norm is used
to enforce the generated samples to look similar to original training data, yet surprisingly
many of the patterns in the generated samples can be recognized. The model generates fea-
tures such as the head of horse, whiskers and face of the cat, fur of the sheep, etc. The model
reconstructs the object features on which it paid attention to while training with original
training data.
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Pseudo-Targets Background Initialization

MOI MOI without background
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7 Hyperparameter Details
The hyperparameters used in experiments can be divided into three categories :

• Generation of MOIs

Hyperparameters Generation of MOIs from the Teacher network
Resnet-18 (KITTI) VGG-16 (Pascal) Resnet-34 (Pascal)

Number of distinct initializations 5000 5000 5000
Number of samples (K) 15000 15000 15000

Augmentation Flip, Cutout Flip, Cutout Flip, Cutout
Maximum number of objects (M) 20 20 20

Imagenet Pretrained Model Pytorch Pytorch Pytorch
Learning Rate 0.01 0.01 0.01

Optimizer Adam Adam Adam
Batch size 16 4 8

Maximum Iterations 100 100 100
Weight to diversity loss (λ ) 2 1.5 1.5

IOUthreshold 0.1 0.1 0.1
Table 6: Details of the hyperparameters used in the generation of MOIs.

• Distillation with MOIs

Hyperparameters Distillation using MOIs as transfer set in the absence of original training data
Resnet-18 to Resnet-18-half

(KITTI)
VGG-16 to VGG-16

(Pascal)
Resnet-34 to Resnet-18

(Pascal)
Number of samples 15000 15000 15000

Total samples with augmentation 30000 30000 30000
Weight to feature imitation loss 5 0.01 1

Table 7: Details of hyperparameters used in distillation with MOIs as a transfer set.

• Teacher training with original data

Hyperparameters Teacher training on original data
Resnet-18 (KITTI) VGG-16 (Pascal) Resnet-34 (Pascal)

Learning Rate (LR) 0.001 0.001 0.001
Step decay 5 6 6
LR decay 0.1 0.1 0.1

Table 8: Hyperparameters involved in Teacher training
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