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1 Network architecture hyper-parameters
We provide the network hyper-parameters of D-Net and W-Net in Table 1 and Table 2, re-
spectively. As specified in the main paper, we use three resolution levels l = (0,1,2) at
quarter, half and full resolution. For generating the image features Featrl and Featsl , we
utilize the FPN architecture of [2] and set the number of feature channels for each level
Fl = (32,16,8). Further, we replace the batch normalization [3] in the FPN [2] with instance
normalization [6]. We denote the entropy calculated from the output mask Bsl according to
Section 3.4 of the main paper as Esl . In Tables 1 and 2, we denote 2D convolutions as 2D
conv, deformable 2D convolutions [7] as 2D def. conv and transposed 2D convolutions as
2D tran. conv. Further, we denote the leaky ReLU activation function as LReLU, the number
of input and output channels with #Cin and #Cout, the stride with str. and kernel size with k
(we add \b when no bias is used, the padding is set to k−1

2 ).

2 Supplementary qualitative results
In Figure 1, we provide qualitative point cloud results of our method IB-MVS for the DTU
[1], Tanks and Temples [4] and ETH3D [5] high and low-res datasets. Additionally, in
Figure 3, we provide supplementary qualitative IB-MVS depth map results from the DTU [1]
dataset.

In order to provide further insights into IB-MVS, in Figure 2 we provide a visualization
of its intermediate outputs at different iterations t = 0,1,4,8. For each source image Is, at
iteration t the hypothesis ht is used to compute the binary decision mask Bt

s and the weight
mask W t

s via D-Net and W-Net, respectively; this permits to compute the new reference
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Figure 1: Qualitative point cloud results for DTU [1] (first row), Tanks and Temples [4]
(second row) and ETH3D [5] high and low-res (third and fourth row).

depth map hypothesis ht+1
s using Eq. (2) of the main paper. The rows 2-5 of Figure 2 show

Bt
s, W t

s and ht+1
s for the 4 source images and different values of t. The new reference image

depth hypothesis ht+1
s are then fused into a single depth map ht+1 using the weights W t

s . The
first row of Figure 2 shows the reference image along with ht+1 for different values of t. We
conclude by observing that, as desired, the weight masks in Figure 2 assign a low confidence
to those areas of the reference image that are occluded in the source image, as these areas
cannot be matched. This can be appreciated in the weight masks W t

s depicted in rows 2
and 3, where the area below the sofa and the left-most region (highlighted in yellow) of the
reference image are dark because they are occluded in the respective source images.
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in name out name #Cin #Cout operation

Featrl Conv1 Fl Fl 2D conv., k=3, str.=1, act.=LReLU
Featsl DConv1 Fl Fl 2D def. conv., k=5, str.=1, act.=LReLU
Conv1 | DConv1 Conc1 2Fl 2Fl concatenate along channel dim.
Conc1 Conv2 2Fl 2Fl 2D conv., k=3, str.=1, act.=LReLU
Conv2 Sc1 2Fl 2Fl 2D conv., k=3, str.=2, act.=LReLU
Featrl Featrl half Fl Fl bilinear interp. downscale to half
Featsl Featsl half Fl Fl bilinear interp. downscale to half
Featrl half Conv3 Fl Fl 2D conv., k=3, str.=1, act.=LReLU
Featsl half DConv2 Fl Fl 2D def. conv., k=5, str.=1, act.=LReLU
Conv3 | DConv2 Conc2 2Fl 2Fl concatenate along channel dim.
Conc2 Conv4 2Fl 2Fl 2D conv., k=3, str.=1, act.=LReLU
Sc1 | Conv4 Conc3 4Fl 4Fl for l = 0 concatenate along channel dim.
Conc3 Conv5 4Fl 4Fl for l = 0 2D conv., k=3, str.=1, act.=LReLU
Fol−1 | Sc1 | Conv4 Conc3 4Fl +4Fl−1 4Fl +4Fl−1 for l > 0 concatenate along channel dim.
Conc3 ConvPr 4Fl +4Fl−1 4Fl for l > 0 2D conv., k=3, str.=1, act.=LReLU
ConvPr Conv5 4Fl 4Fl for l > 0 2D conv., k=3, str.=1, act.=LReLU
Conv5 Sc2 4Fl 4Fl 2D conv., k=3, str.=2, act.=LReLU
Featrl Featrl quar. Fl Fl bilinear interp. downscale to quarter
Featsl Featsl quar. Fl Fl bilinear interp. downscale to quarter
Featrl quar. Conv6 Fl Fl 2D conv., k=3, str.=1, act.=LReLU
Featsl quar. DConv3 Fl Fl 2D def. conv., k=5, str.=1, act.=LReLU
Conv6 | DConv3 Conc4 2Fl 2Fl concatenate along channel dim.
Conc4 Conv7 2Fl 2Fl 2D conv., k=3, str.=1, act.=LReLU
Sc2 | Conv7 Conc5 6Fl 6Fl concatenate along channel dim.
Conc5 Conv8 6Fl 6Fl 2D conv., k=3, str.=1, act.=LReLU
Conv8 Conv9 6Fl 6Fl 2D conv., k=3, str.=1, act.=LReLU
Conv9 Conv10 6Fl 6Fl 2D conv., k=3, str.=1, act.=LReLU
Conv10 UConv1 6Fl 6Fl 2D tran. conv.,k=4\b, str.=2, act.=LReLU
Conv5 | UConv1 Conc6 10Fl 10Fl concatenate along channel dim.
Conc6 Conv11 10Fl 4Fl 2D conv., k=3, str.=1, act.=LReLU
Conv11 Conv12 4Fl 4Fl 2D conv., k=3, str.=1, act.=LReLU
Conv12 UConv2 4Fl 4Fl 2D tran. conv.,k=4\b, str.=2, act.=LReLU
Conv2 | UConv2 Conc7 6Fl 6Fl concatenate along channel dim.
Conc7 Fol 6Fl 4Fl 2D conv., k=3, str.=1, act.=LReLU
Fol Bsl 4Fl 1 2D conv., k=3\b, str.=1, act.=sigmoid

Table 1: D-Net architecture hyper-parameters, specifying the convolution type, number of
input and output channels, kernel size, stride and activation function.
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Figure 2: We visualize intermediate results of IB-MVS for a view of the ETH3D [5] high-res
living room scene. The top row shows the depth hypothesis ht+1 predicted at iteration t
by fusing the depth hypothesis ht+1

s from different source images according to W t
s . We also

show the binary decision masks Bt
s. We color code low to high depth values from blue to red.

For Bt
s and W t

s black represents the value 0 and white represents the value 1.
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in name out name #Cin #Cout operation

Esl Conv1 1 2Fl for l = 0 2D conv., k=3, str.=1, act.=LReLU
Esl Conv0 1 Fl for l > 0 2D conv., k=3, str.=1, act.=LReLU
Fol−1 FoUp

Fl−1
2

Fl−1
2 for l > 0 bilinear interp. upscale to double res.

FoUp ConvPr Fl−1
2 Fl for l > 0 2D conv., k=3, str.=1, act.=LReLU

Conv0 | ConvPr Conc1 2Fl 2Fl for l > 0 concatenate along channel dim.
Conc1 Conv1 2Fl 2Fl for l > 0 2D conv., k=3, str.=1, act.=LReLU
Conv1 Conv2 2Fl 2Fl 2D conv., k=3, str.=1, act.=LReLU
Conv2 Conv3 2Fl Fl 2D conv., k=3, str.=1, act.=LReLU
Conv3 Fol 2Fl

Fl
2 2D conv., k=3, str.=1, act.=LReLU

Fol wsl
Fl
2 1 2D conv., k=3\b, str.=1, act.=identity

Table 2: W-Net architecture hyper-parameters, specifying the convolution type, number of
input and output channels, kernel size, stride and activation function.

Figure 3: Qualitative depth map results for DTU [1]. For each column, the reference image
is at the top and the corresponding IB-MVS depth map at the bottom. Low to high depth
values are color coded from blue to red.
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