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1 Network architecture hyper-parameters

We provide the network hyper-parameters of D-Net and W-Net in Table | and Table 2, re-
spectively. As specified in the main paper, we use three resolution levels [ = (0,1,2) at
quarter, half and full resolution. For generating the image features Feat,, and Featy,, we
utilize the FPN architecture of [2] and set the number of feature channels for each level
F, = (32,16,8). Further, we replace the batch normalization [3] in the FPN [2] with instance
normalization [6]. We denote the entropy calculated from the output mask By, according to
Section 3.4 of the main paper as Ej,. In Tables 1 and 2, we denote 2D convolutions as 2D
conv, deformable 2D convolutions [7] as 2D def. conv and transposed 2D convolutions as
2D tran. conv. Further, we denote the leaky ReLLU activation function as LReLU, the number
of input and output channels with #Cj,, and #Cyy, the stride with st and kernel size with k
(we add \b when no bias is used, the padding is set to k’Tl).

2 Supplementary qualitative results

In Figure 1, we provide qualitative point cloud results of our method IB-MVS for the DTU
[1], Tanks and Temples [4] and ETH3D [5] high and low-res datasets. Additionally, in
Figure 3, we provide supplementary qualitative IB-MVS depth map results from the DTU [1]
dataset.

In order to provide further insights into IB-MVS, in Figure 2 we provide a visualization
of its intermediate outputs at different iterations ¢ = 0, 1,4,8. For each source image I, at
iteration ¢ the hypothesis A’ is used to compute the binary decision mask B and the weight
mask W/ via D-Net and W-Net, respectively; this permits to compute the new reference
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Figure 1: Qualitative point cloud results for DTU [1] (first row), Tanks and Temples [4]
(second row) and ETH3D [5] high and low-res (third and fourth row).

depth map hypothesis hg“ using Eq. (2) of the main paper. The rows 2-5 of Figure 2 show
B!, W! and K1 for the 4 source images and different values of 7. The new reference image
depth hypothesis #.*! are then fused into a single depth map 4'*! using the weights W!. The
first row of Figure 2 shows the reference image along with #*! for different values of #. We
conclude by observing that, as desired, the weight masks in Figure 2 assign a low confidence
to those areas of the reference image that are occluded in the source image, as these areas
cannot be matched. This can be appreciated in the weight masks W! depicted in rows 2
and 3, where the area below the sofa and the left-most region (highlighted in yellow) of the
reference image are dark because they are occluded in the respective source images.
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in name out name #Cy, #Coyt  Operation

Feat,, Convl F F 2D conv., k=3, str.=1, act.=LLReLLU

Featy, DConvl F F 2D def. conv., k=5, str.=1, act.=LReLLU
Convl | DConvl  Concl 2F; 2F concatenate along channel dim.

Concl Conv2 2F 2F 2D conv., k=3, str.=1, act.=LReLU

Conv2 Scl 2F; 2F 2D conv., k=3, str.=2, act.=LReLLU

Feat,, Feat,, half F F bilinear interp. downscale to half

Featy; Feat,, half F F bilinear interp. downscale to half

Feat,, half Conv3 F F 2D conv., k=3, str.=1, act.=LReLLU

Feat, half DConv2 F F 2D def. conv., k=5, str.=1, act.=LReLLU
Conv3 | DConv2  Conc2 2F 2F concatenate along channel dim.

Conc2 Conv4 2F; 2F; 2D conv., k=3, str.=1, act.=LReLLU

Scl | Conv4 Conc3 4F; 4F; for [ = 0 concatenate along channel dim.
Conc3 Conv5 4F; 4F; for [ =0 2D conv., k=3, str.=1, act.=LReLLU
Fo;_1 1Scl | Conv4 Conc3 4F; +4F;_| 4F;+4F;_, for [l > 0 concatenate along channel dim.
Conc3 ConvPr  4F +4F_ 4F; for [ > 0 2D conv., k=3, str.=1, act.=LReLU
ConvPr Conv5 4F; 4F; for [ > 0 2D conv., k=3, str.=1, act.=LReLLU
Conv5 Sc2 4F; 4F; 2D conv., k=3, str.=2, act.=LReLLU

Feat,, Feat,, quar. F F bilinear interp. downscale to quarter
Featy; Feat,, quar. F F bilinear interp. downscale to quarter
Feat,, quar. Conv6 F F 2D conv., k=3, str.=1, act.=LReLLU

Feat,, quar. DConv3 F F 2D def. conv., k=5, str.=1, act.=LReLLU
Conv6 | DConv3  Conc4 2F; 2F concatenate along channel dim.

Conc4 Conv7 2F; 2F; 2D conv., k=3, str.=1, act.=LReLLU

Sc2 | Conv7 Conc5 6F; 6F; concatenate along channel dim.

Conc5 Conv8 6F; 6F; 2D conv., k=3, str.=1, act.=LReLU

Conv8 Conv9 6F; 6F; 2D conv., k=3, str.=1, act.=LReLLU
Conv9 Conv10 6F; 6F; 2D conv., k=3, str.=1, act.=LReLLU
Conv10 UConvl 6F; 6F; 2D tran. conv.,.k=4\b, str.=2, act.=LReLU
Conv5 | UConvl  Conc6 10F; 10F;  concatenate along channel dim.

Conc6b Convll 10F; 4F; 2D conv., k=3, str.=1, act.=LReL.U
Convll Convl12 4F; 4F; 2D conv., k=3, str.=1, act.=LReLU
Convl12 UConv2 4F; 4F; 2D tran. conv.,k=4\b, str.=2, act.=LReLU
Conv2 | UConv2  Conc7 6F; 6F; concatenate along channel dim.

Conc7 Foy, 6F; 4F; 2D conv., k=3, str.=1, act.=LReLLU

Fo; By, 4F; 1 2D conv., k=3\b, str.=1, act.=sigmoid

Table 1: D-Net architecture hyper-parameters, specifying the convolution type, number of
input and output channels, kernel size, stride and activation function.
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Figure 2: We visualize intermediate results of IB-MVS for a view of the ETH3D [5] high-res
living room scene. The top row shows the depth hypothesis 4! predicted at iteration ¢
by fusing the depth hypothesis h’s+1 from different source images according to W!. We also
show the binary decision masks B.. We color code low to high depth values from blue to red.
For B. and W/ black represents the value 0 and white represents the value 1.
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in name out name #Cj, #Coy operation

E;, Convl 1 2F forl=02D conv., k=3, str.=1, act.=LReLU
E;, Conv0 1 F;  forl > 02D conv., k=3, str.=1, act.=LReLU
Fo;_ Foup % % for / > 0 bilinear interp. upscale to double res.
Foup ConvPr % F;  forl > 02D conv., k=3, str.=1, act.=LReLU
Conv0 | ConvPr Concl 2F; 2F; for ! > 0 concatenate along channel dim.
Concl Convl 2F; 2F; forl > 02D conv., k=3, str.=1, act.=LReLU
Convl Conv2 2F; 2F; 2D conv., k=3, str.=1, act.=LReLU

Conv2 Conv3 2F;  F; 2D conv., k=3, str.=1, act.=LReLU

Conv3 Foy, 2F % 2D conv., k=3, str.=1, act.=L.ReLLU

Fo, Wy, % 1 2D conv., k=3\b, str.=1, act.=identity

Table 2: W-Net architecture hyper-parameters, specifying the convolution type, number of
input and output channels, kernel size, stride and activation function.

Figure 3: Qualitative depth map results for DTU [1]. For each column, the reference image
is at the top and the corresponding IB-MVS depth map at the bottom. Low to high depth
values are color coded from blue to red.
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