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This supplementary material is structured as follows. We start by summarizing the math-
ematical notation in section 1 and proceed to give additional details about the model ar-
chitecture (section 2), training process (section 3), SPARROW framework (section 4) and
experiments (section 5) presented in the main paper.

1 Notation
Table 1 summarizes the conventions regarding the notation and meaning of mathematical
symbols in the main paper and the remainder of this supplementary material.

2 Model architecture
This section provides additional details about the model architecture of ProtoPNet [1]. An
overview is shown in table 2. The prototype classification network learns a transformation
h◦gP ◦ f (X) on images from a given dataset D = [X ,Y ] = {xi,yi}n

i=1. The transformation is
composed of a convolutional base network f , a prototype unit gP and a fully-connected layer
h.

Convolutional base network The convolutional base network f learns a latent space fea-
ture embedding. We select a ResNet18 architecture to which we append two convolutional
addon-layers which do not change the shape of the ResNet18 output in accordance with Chen
et al. [1]. For the ResNet18 layers we use weights pretrained on ImageNet [5]. f reduces
the sample dimensions from Sraw to S = (s,s) = (7,7) and the whole latent space dimension
is (l,s,s) = (512,7,7), where l is the number of convolutional filter layers.
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Symbol Meaning

ntrain Number of unaugmented training samples
ntest Number of test samples
N Total number of unaugmented samples in the dataset. N = ntrain +ntest
naug Number of augmented samples
ρtrain-val Fraction of augmented samples naug which are used for training
n Number of augmented training samples, given by n = ρtrain-val ·naug
nval Number of augmented validation samples, given by nval = (1−ρtrain-val) ·naug
Sraw Size of samples after preprocessing (cropping and rescaling)
S Kernel size of samples in latent space which is quadratic: S := (s,s)
Spt Kernel size of prototypes in latent space which is quadratic: Spt := (spt,spt)
l Number of convolutional filter layers in latent space
m Number of prototypes before pruning
C Number of classes in the dataset
xi Single preprocessed training sample, i ∈ [1, . . . ,n]
ci Class of sample xi
X Set of all preprocessed training samples{xn

i=1}
p j Single prototype, j ∈ [1, . . . ,m]
P Set of all prototypes {pm

j=1}
Pci Set of prototypes {pm̃i′

j=m̃i
} of class ci with m̃i, m̃i′ ∈ [1, . . .m]

Pci Interval of indices [m̃i, . . . , m̃i′] for prototypes of class ci with m̃i, m̃i′ ∈ [1, . . .m]
f Combination of base- and add-on layers of the neural network
gP Prototype unit of the neural network which contains prototypes P
h Last layer of the neural network
L Total loss in the prototype learning phase of the training
Lν ν-th loss component of L with ν ∈ {CrsEnt,Clst,Sep,AS,PSD}
λLν Weight of the ν-th loss component Lν in the total loss L
ω

γ, j
h Last layer weights with γ ∈ [1, . . . ,C] and j ∈ [1, . . .m]

LL1 L1 norm regularization of last layer weights ω
γ, j
h

λLL1 Weight of the regularizer LL1 in the total last layer optimization loss
T Number of annotated part types in the dataset
T̃i Number of parts in the i-th sample which are matched by at least one prototype
ri,k Coordinate of the k-th part in the transformed sample input space of the i-th sample
R Set of part coordinates {rN,T

i,k=1,1}
matchi, j,k Scalar which is 1 if there is a match between the j-th prototype ( j ∈ Pci )

and the k-th part (k ∈ [1, . . . ,T ]) for the i-th sample (i ∈ [1, . . . ,N]). Otherwise it is 0

Table 1: Table of notation
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Hierarchy Type Output size Info

Base ResNet (512,7,7) ResNet architecture [3], based on the torchvision
implementation [5], where we stripped away the last
two layers (average pooling and fully connected layer)

Add-on conv (512,7,7) Kernel size (1,1), stride (1,1), ReLU activation function,
Kaiming He initialization [2]

Add-on conv (512,7,7) Kernel size (1,1), stride (1,1), Sigmoid activation
function, Kaiming He initialization [2]

Prototype params (512,spt,spt) Kernel size (spt,spt), parameters are randomly initialized
from a uniform distribution on [0,1)

Last-layer fc (m,C) No bias, Kaiming He initialization [2]

Table 2: Model architecture of ProtoPNet

Prototype unit The prototype unit gP contains a set of m prototypes P = {pm
j=1} which oc-

cupy a latent space kernel of the minimal possible size Spt = (spt ,spt) = (1,1) and therefore
have the shape (m, l,spt ,spt). For each sample, gP first calculates the squared L2 distances
between the latent space patches of samples f (X) and the prototypes P. This calculation is
performed per prototype while summing over the filter layers. The resulting distances are
converted to similarity scores. Concretely, this means that the j-th prototype unit gp j com-
putes a similarity score between prototype p j and latent space patches of a sample ξ ∈ X as
[1]

gp j( f (ξ )) = max
z∈patches( f (ξ ))

log
(
‖z−p j‖2 +1
‖z−p j‖2 + ε

)
, (1)

where ε is a very small number. Since this is a monotonically decreasing function with
respect to the L2 distance ‖z−p j‖ between a prototype and a latent space patch of a sample,
it is a suitable choice for describing the similarity between a prototype and sample patch [1].
This means that the similarity between a sample and a prototype is effectively determined
by the latent space patch of the sample which is most similar to the given prototype. The
similarity scores have the shape (m,spt ,spt) which in our case is (m,1,1).

Fully connected layer The fully connected layer h (called “last layer") calculates final
class scores as a weighted superposition of the output of gP. This is done by applying a
fully connected layer without a bias term on the resulting similarity scores which is of shape
(m,C) where C is the number of classes.

3 Training process
In this section we provide further details about the training process of ProtoPNet [1].

Training steps The training consists of three main steps. As a final step prototypes that
focus on background semantics may be pruned, e.g. with the approach by Chen et al. [1]. In
this work we do not perform any pruning.

Step 1: Prototype learning Parameters of the neural network and the prototypes are
jointly learned while the weights of the last layer are frozen. An important concept is that
the weights of the last layer are fixed such that each output logit is connected to an equal
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number of outputs of gP while all other connections are set to −0.5. For this reason it can
be said that prototypes “have a certain class identity" or “belong to a class". The total loss
function is composed of a weighted superposition of five loss components with static weights
as (cf. table 1 in the main paper): L = ∑ν λLν · Lν with ν ∈ {CrsEnt,Clst,Sep,AS,PSD}.
Only class labels but no part annotations are used in training.

Step 2: Prototype projection After the main training is finished a prototype projection
(also called “prototype push") is performed by which the prototypes are moved in latent
space to the sample patch with the same class identity as the prototype which has the mini-
mum L2-distance of all samples in the training set.

Step 3: Last layer optimization The prototype push is followed by a convex optimiza-
tion of the last layer where the weights of all other layers are frozen. During this phase
a L1 norm regularization of the off-label weight connections ω

γ, j
h between the C classes

(γ ∈ [1, . . . ,C]) and m outputs ( j ∈ [1, . . .m]) of the prototype unit gP is performed as

LL1 = ∑
γ

∑
j 6∈Pγ

|ωγ, j
h |, (2)

where Pγ is the set of prototypes of the γ-th class. The off-label weights which were initially
fixed to −0.5 are effectively reduced to zero. This is done to prevent a negative reasoning
process for the classification [1]. This loss is added to the total loss (which at this stage is
given by LCrsEnt) with weight λLL1 . The last layer optimization is performed over epochsll
epochs.

Train-validation split Before the training, we perform a train-validation split where we
split the naug augmented samples into n = (ρtrain-val) ·naug training and nval = (1−ρtrain-val) ·
naug validation samples, where ρtrain-val is the splitting factor.

Warm start The training starts with a “warm start" of several epochs in which only the
parameters of the add-on layers and the prototype vectors P are optimized while the param-
eters of the base network and the last layer are frozen. Only prototype learning is performed
during the warm start. The training phase after the warm start is refered to as “main training".

Early stopping Both the warm start and main training run until stopped by an early-
stopping method when the average validation accuracy does not increase by the fraction
deltawarm/main of the validation score over patwarm/main epochs (patience). After early stop-
ping of the prototype learning step in the main training phase, the model checkpoint of
patmain epochs earlier is loaded and used for the following steps, i.e. prototype push and last
layer optimization.

Clamping of cosine similarity The cosine similarity CS(pi,p j) =
pT

i ·p j
‖pi‖‖p j‖ between two

prototypes pi and p j can theoretically take its maximum or minimum value of 1 and −1.
Especially the former will occasionally happen after a prototype push if two prototypes are
pushed to the same latent space sample patch of the same sample. This is not a problem in
principal [1] but will lead to infinite gradients of AS(pi,p j) = 1− 1

π
arccos(CS(pi,p j)) dur-

ing backpropagation. To prevent this we decided to clamp the values of the cosine similarity
to the interval [−0.9999,0.9999].
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Simplifications In order to simplify the training process and since we are not interested
in optimizing the classification performance of the baseline in the context of this work we
only perform one final push epoch and also do not use a learning rate scheduler in contrast
to Chen et al. [1].

4 SPARROW

Matching Prototypes with Part Annotations This section gives a more detailed expla-
nation on how to obtain the matches between prototypes and part annotations (cf. section
2 of the main paper). We define that the part annotations R = {rN,T

i,k=1,1} have already been
subject to the same transformations as the raw input samples (cf. section 5). As noted in
algorithm 1 we first obtain the activation map of the latent space sample patch which has
the smallest L2 distance to a prototype (line 5). This is done for all samples {xN

i=1} and
prototypes Pci = {p

m̃i′
j=m̃i
} with the same class identity ci ∈ [1, . . . ,C] as the samples. Here,

m̃i, m̃i′ ∈ [1, . . .m] and we define Pci = [m̃i, . . . , m̃i′] to be the interval of indices of prototypes
which belong to class ci. The activation maps are upsampled to the pixel space of sample
inputs (line 6). Next, a mask is selected based on an activation threshold (line 7).

Schematic prototype masks are illustrated together with annotated image parts in figure 1.
Each part coordinate is matched with the mask and matches are noted in {matchN,m̃N ,T

i, j,k=1,m̃1,1
}

(lines 8-13). If an activation mask does not match any part annotation, we select the closest
coordinate to the mask as a match (lines 14-17).

Algorithm 1 Find matches between sample patch activations by prototypes and part annota-
tions.

1: matchi, j,k← initialize to 0 for (i, j,k) = (1, m̃1,1), . . . ,(N, m̃N ,T )
2: for i = 1,2, . . . ,N do
3: for j = m̃i . . . , m̃′i do
4: pt_has_match← False
5: acti, j←minz∈patches( f (xi)) ‖z−p j‖2

6: actup
i, j ← upsampling of acti, j to pixel space

7: maski, j← select values > threshold in actup
i, j

8: for k = 1,2, . . . ,T do
9: if ri,k lies within the mask then

10: matchi, j,k← 1
11: pt_has_match← True
12: end if
13: end for
14: if not pt_has_match then
15: Find k for which ri,k is closest to the mask
16: matchi, j,k← 1
17: end if
18: end for
19: end for
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Figure 1: Part annotations vs. activation masks. Sample images from the CUB [6] dataset
(containing T = 15 part annotations) showing annotations of visible parts (numbers 1 to 15)
and schematic illustrations of the activation masks of prototypes (P1 to P5).

5 Experiments
This section provides additional details about the experiments that we performed (cf. section
3 of the main paper).

Dataset The Caltech-UCSD Birds-200-2011 dataset (CUB) [6] contains N = 11788 im-
ages of birds which divide into ntrain = 5994 training and ntest = 5794 test samples. For each
sample there exists one class- and T = 15 keypoint part annotations1, where the total number
of classes is C = 200 bird species. The samples are distributed reasonably evenly between
classes so that one class contains about 30 samples. After preprocessing which includes data
augmentation we have n = 194206 augmented training samples of size Sraw = (224,224)
and each class contains about 1200 images. Training is performed on the augmented train-
ing data while the protoype projection uses unaugmented training samples and the SPARROW
evaluation protocol is applied on all unaugmented training and test samples.

Data Preprocessing Preprocessing of the samples from the CUB dataset follows the ap-
proach from Chen et al. [1] and consists of the following steps in the given order:

• The birds are cropped from the background by bounding boxes which are provided by
the dataset.

• All samples are rescaled to size Sraw = (224,224).

• Data augmentation is applied on all training samples which consists of rotating, skew-
ing, shearing, randomly distorting and flipping the images.

• All samples are normalized by the mean and standard deviation of the training set.

1Parts are: back, beak, belly, breast, crown, forehead, left eye, left leg, left wing, nape, right eye, right leg, right
wing, tail, throat. Not all parts are visible in every sample.
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Context Parameter Value Explanation

Data
(CUB)

ntrain 5994
ntest 5794
N 11788
naug 215784
ρtrain-val 0.9
n 194206
nval 21578
C 200
T 15
Sraw (224,224)

Model
Spt (1,1)
m {1000,2000,

4000}
Number of prototypes used in the experiments

Training

λLCrsEnt 1
λLClst 1
λLSep 0
λLAS 0 / 1 for baseline / own method
λLPSD 0 / 100 for baseline / own method
λLL1 1e−2
batch size 32 Number of samples per mini-batch in a training iteration
optimizer Adam [4]
lrbase 1e−4 Learning rate in the base network (cf. table 2)
lradd-on 1e−4 Learning rate in the add-on network (cf. table 2)
lrprototype 3e−3 Learning rate in the prototype layer (cf. table 2)
decaybase 1e−3 Weight decay of the Adam opt. in the base network
decayadd-on 1e−3 Weight decay of the Adam otp. in the add-on network
patwarm 1 Warm start early stopping patience in epochs
patmain 3 Main training early stopping patience in epochs
deltawarm 1e−2 Warm start early stopping criterion
deltamain 5e−3 Main training early stopping criterion
epochsll 3 Epochs of convex optimization of the last layer

Table 3: Choices for Hyperparameters. The meaning of the symbols is explained in table
1.
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With LAS With LPSD epochswarm epochsmain time [h] accval [%]

False False 10 6 6.88 98.6
False True 9 9 8.00 99.0
True False 10 19* 72.23* 90.7*
True True 10 8 34.42 97.2

Table 4: Convergence and training duration in epochs and hours with the hardware as de-
scribed in section 5 and hyperparameters in table 3. The time calculation includes all training
steps (prototype learning, prototype push, last layer optimization), phases (warm start and
main training) and the performance evaluation. accval is the final validation accuracy. Entries
marked with * are not final since the respective experiment did not finish until the submission
of this supplementary material.

Hyperparameter Optimization An overview over all hyperparemeters is shown in table
3. Most parameters are oriented on the work of Chen et al. [1]. In order to tune the static
weights of the loss components λLν (ν ∈ {CrsEnt,Clst,Sep,AS,PSD}), we performed two
rounds of subsequent random search and Bayesian Optimization (BO) runs. For BO we used
an Upper Confidence Bound acquisition function and a Gaussian Process with a Matern
kernel as a surrogate. We optimized for a measure of balance between performance and
interpretability for which we used

opt =
2 · accval +ptd+ptf

4
, (3)

with the validation accuracy accval and the ptd and ptf measures as defined in section 2 in
the main paper. We reduced the time demand of the tuning process by randomly reducing
the number of classes to 20 in each experiment and ran each experiment until early stopping.

In both optimization rounds, we ran 30 initial random searches which seeded 45 iterations
of BO. In the first round, we selected values for each loss component weight from an even
distribution of 100 values on a logarithmic scale over the interval [0.01,100]. We found
that for the top performing runs, λLAS was typically smaller than the weight of the other
loss components except for λLSep which was typically optimized to λLSep = 0.01 with all
other loss component weights being at least two orders of magnitude larger. We performed
a second optimization round for fine-tuning in which we set λLSep = 0.01 and λLAS = 1
and selected the other loss component weights from an even distribution of 15 values on a
logarithmic scale over the interval [1,100]. Amongst the top performing runs we opted for
a simple choice for the set of remaining parameters (λLCrsEnt = 1, λLClst = 1, λLPSD = 100).
We did a final round of experiments where we investigated if we could do without one of the
loss components and actually found that setting λLSep = 0 slightly improved our optimization
goal (cf. eq. 3). This might be because the newly introduced PSD loss which tries to keep
prototypes close to samples of the same class fulfills a similar purpose (i.e. keeping samples
away from prototypes of other classes).

Training hardware Experiments were performed on single NVIDIA GeForce RTX 1080
Ti GPUs with 11 GB GDDR6 of graphics memory.

Convergence and training duration We analyzed how the training duration varies based
on inclusion or exclusion of the new loss componentsLAS andLPSD. The results are reported
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Prototypes Total runtime [h]

1000 5.25
2000 10.57
4000 19.35

Table 5: Time demand for the SPARROW evaluation protocol for different numbers of
prototypes with the hardware as described in section 5 and hyperparameters in table 3.

in table 4. The ProtoPNet model without any additional loss components (first line) has the
shortest runtime until convergence. Including the LPSD loss component (second line) only
slightly increases time to convergence. However, including the LAS loss component (third
line) but not the LPSD loss component leads to a very slow convergence and as a result to
a greatly increased time demand until early stopping. This experiment did not finish until
the submission of this supplementary material but the slow convergence is clearly visible.
This slow convergence is mitigated to a reasonable extent by also including the LPSD loss
component (last line) which is our proposed method. Its runtime is about five times as high
as that of the original ProtoPNet model (first line).

Optimizing the time-demand of our method and developing new methods with reduced
time-demand but comparable explanatory capacity (measured by the SPARROW evaluation
protocol) are goals we want to pursue in future work.

Time demand for the SPARROW evaluation protocol The time-demand of the SPARROW
evaluation protocol for different numbers of prototypes is shown in table 5. It can be seen that
it increases about linearly with the number of prototypes. These numbers should however
be seen as an easy to reach upper limit since we did not yet optimize our implementation for
performance. We see this as a goal for future work.
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