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In this supplementary section, we provide,

1. Implementation details of the proposals and experimental settings,

2. Additional quantitative results,

3. Additional qualitative results.

1 Implementation Details

1.1 Dataset and Evaluation Metrics

1.1.1 Semantic Segmentation

We use the PASCAL Context [19], ADE20K [27], and Cityscapes [5] datasets. The abla-
tion studies are conducted on PASCAL Context [19]. We use the standard metrics of pixel
accuracy (pixAcc) and mean Intersection-Over-Union (mIoU). For the scene parsing results
on the Pascal Context and ADE20K val sets, we ignore the background pixels in the eval-
uation, following convention [27]. For the evaluation of semantic segmentation results on
the Cityscapes, we use a public evaluation server. We use the SGD optimizer with a “poly”
learning rate scheduling lr = baselr ∗ (1− iter

total_iter )
power, where power is set to 0.9. The

base learning rate is initialized to 0.01 for the ADE20K dataset and 0.001 for others. We
use a batch size of 8 with four NVIDIA V100 GPUs. We adopt single-scale testing. To
evaluate each baseline module’s pure long-term context modeling ability, we do not adopt
any auxiliary loss or module (e.g., se loss in EncNet [25] or encoding module in CFNet [26])
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Method Non-local Context Rel-Position Multi-head Dropout pixAcc% mIou%
FCN 75.57 45.78

X 76.43 47.25
X X 77.23 49.11
X X 77.42 49.33
X X 77.08 48.98
X X X 78.86 50.74
X X X X 78.94 51.18

FCN + Ours X X X X X 79.14 51.27

Table 1: Ablation results on major design choices using Pascal Context. We adopt ResNet50
as the FCN backbone.

1.1.2 Detection & Instance Segmentation

We use the COCO Detection dataset [17]. All reported results follow standard COCO-style
Average Recall (AR) and Average Precision (AP) metrics. We train the models on train2017
and report the final results on test-dev. We use the SGD optimizer with an initial learning
rate of 0.01. The model is trained for a total of 12 epochs, and the learning rate is divided by
10 after 8 and 11 epochs. We use a batch size of 16 with eight NVIDIA V100 GPUs.

1.1.3 Panoptic Segmentation

We use the COCO Panoptic dataset [17]. For a quantitative evaluation, we use the PQ metric,
which captures both the recognition and segmentation quality and treats both stuff and thing
categories in a unified manner [15]. We use the same training details with the above detection
experiments.

2 Quantitative Analysis

2.1 Ablation Studies

We conduct ablation studies to explore how each component of our formulation contributes
to the performance gain. We carry out the ablation experiments using the Pascal Context [19]
dataset. These results are shown in Table 1.

2.1.1 Non-local Self-Attention

We begin by applying the standard non-local block [23] to the FCN. Here pixAcc and mIoU
increase from 75.57 to 76.43 and 45.78 to 47.25, respectively. The incorporation of the non-
local block is positive, indicating that long-range relationships are beneficial for the task.

2.1.2 Impact of Contextual Prior

We now introduce the context into the original formulation. Specifically, we modulate the
relation computation with the proposed context matrix. In this case, pixAcc and mIoU in-
crease from 76.43 to 77.23 and from 47.25 to 49.11, respectively. These results show that
the image-level context indeed provides better relationship learning.

Additionally, we conduct experiments to evaluate the influence of the pooling methods
when computing the context vector. In particular, we compare our global average pooling
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dist type
enc method

None Sinusoid

absolute 78.30/50.22 [18] 78.42/50.31
relative 78.65/50.49 78.86/50.74

((a)) Exps on distance type and encoding method

emb method

cont-indep (r) [10, 11] 78.32/50.59

cont-dep (qT r) 78.86/50.74

((b)) Exps on embedding method

Number of heads
H = 1 H = 2 H = 4 H = 8 H = 16

78.86/50.74 78.88/50.84 78.91/51.04 78.94/51.18 78.92/51.15

((c)) Exps on the number of heads

Table 2: Detailed ablations on relative position embedding and multi-head using Pascal Con-
text. Each cell includes segmentation scores (pixAcc%/mIoU%).

with global max pooling. We observe that average pooling (77.23/49.11) outperforms max-
pooling (77.09/48.78). Average pooling aggregates the neighboring features with an equal
contribution, whereas max-pooling selects a single distinct feature to represent its neighbors.
We thus find that average-pooling makes better use of contextual information and promotes
effective relation learning. As a result, here we use average-pooled features in the subsequent
experiments.

2.1.3 Impact of Geometric Prior

We explore the effectiveness of 2D relative position embeddings. pixAcc and mIoU increase
from 77.23 to 78.86 and 49.11 to 50.74, respectively. This indicates that the relative position
information further helps relational reasoning and is complementary to the context, which
demonstrates the effectiveness of our unified design. Note that previous works are limited to
the use of global context [2] or the relative position [1, 21]. The single effect of the relative
position is also investigated. pixAcc and mIoU increase from 76.43 to 77.42 and 47.25
to 49.33, respectively. Overall, these results demonstrate the great impact of the relative
position information.

Furthermore, in Table 2(a) and Table 2(b), we conduct a detailed analysis of the proposed
relative position formulation. First, we experimentally verify that using both the relative dis-
tance and sinusoid encoding enables finer relation reasoning. We compare a total of four
variants in Table 2(a). All variants of position representations are added with (qT c)k at the
same location for a fair comparison. The results show that the relative distance consistently
outperforms the absolute representation, with sinusoid encoding further improving the per-
formance. In practice, the relative distance ensures translation-equivariance in the image,
and sinusoid encoding allows the model to attend to the relative positions easily. Note that
the first variant of absolute distance without sinusoid encoding can be considered as the form
presented in earlier work [18], which is clearly inferior to ours (78.30 vs. 78.86, 50.22 vs.
50.74). Second, we investigate the effect of content-dependency (i.e., r vs qT r). To obtain
a content-independent result [10, 11], we embed the relative position information without
any interaction with the query content. Not surprisingly, we obtain relatively inferior results
of 78.32 and 50.59. This implies that content-conditioning is a crucial operation. It allows
the model to associate the relative position information with the content of certain object,
causing the model to capture high-level, complex motifs. More concisely, we use relative
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Method Dataset pixAcc% / mIoU%
cosine distance

input output att

FCN + Non-local [23]
Pascal Context

76.43/47.25 0.254 0.016 0.003
FCN + Ours 79.14/51.27 0.271 0.143 0.135

FCN + Non-local [23]
ADE20K Context

79.11/39.32 0.245 0.082 0.019
FCN + Ours 79.72/40.41 0.287 0.150 0.101

FCN + Non-local [23]
Cityscapes

95.38/74.19 0.201 0.166 0.193
FCN + Ours 95.65/75.55 0.217 0.214 0.197

Table 3: Cosine distance analysis on Pascal Context, ADE20K, and Cityscapes. We adopt
ResNet50 as the FCN backbone and compare our formulation with a non-local strategy [23].
We compute the cosine distances of input, output, and attention in the non-local block, fol-
lowing earlier work [2].

distances and encode them using the sinusoid function. The encoded relative distance infor-
mation is embedded in a content-dependent manner.

2.1.4 Multi-head & Dropout

We further push the performance by employing multi-head and dropout techniques. In this
case, pixAcc and mIoU increase from 78.86 to 79.14 and 51.04 to 51.27, respectively. We
find that the multi-head strategy brings some extent of the model-ensemble effect. Its indi-
vidual effect is also investigated, improving the pixAcc and mIoU from 76.43 to 77.08 and
47.25 to 48.98, respectively. In Table 2(c), we conduct an experimental analysis of the head
number, finding that increasing the head improves the performance, and that it saturates at
H=8. Meanwhile, dropout imposes an information bottleneck during the relation learning
step, which encourages general representations.

Method Dataset Params Flops mAPbbox / APmask cosine distance
input output att

Mask R-CNN [9]
COCO

44.18M 275.58G 37.1/34.1 - - -
Mask RCNN [9] + BFPN [23] 44.44M 276.63G 37.9/34.9 0.362 0.080 0.156
Mask RCNN [9] + EBFPN 44.57M 276.24G 39.1/35.6 0.355 0.200 0.297

Table 4: Cosine distance analysis on COCO val. We use the Mask RCNN model
(ResNet50 + FPN backbone) and compare the proposed EBFPN with BFPN [20]. Specifi-
cally, we compute the cosine distance of input, output, and attention in the non-local block,
following earlier work [2].

2.2 Cosine Distance Analysis of Learned Features
To concretely verify that our attention map is query-specific compared to the original non-
local self-attention method, we compute the cosine distances1 between the input features,
output features, and attention maps in the non-local block, following an earlier study [2].
Table 3 and Table 4 show the experimental results. With the original non-local block [23],
we can observe the general tendency of the values in ‘output’ and ‘att’ columns are one

1avg_dist = 1
N2 ∑

N
i=1 ∑

N
j=1 dist(xi,x j), where xi denotes the feature vector for position i, N indicates the total

number of spatial locations, and dist(xi,x j) = (1− cos(xi,x j))/2.
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.
Method Backbone Params Flops mAP mAP.5 mAP.75

Mask R-CNN [9]
ResNet101

63.17M 351.65G 39.4(35.7) 60.8(57.6) 43.1(38.2)
Mask R-CNN + BFPN [20] 63.43M 352.70G 40.1(36.4) 62.3(58.8) 43.5(38.6)
Mask R-CNN + EBFPN 63.56M 352.31G 41.0(37.1) 63.3(59.6) 44.7(39.5)

Mask R-CNN [9]
HRNetV2

49.93M 352.92G 40.1(36.3) 61.2(58.0) 43.7(38.7)
Mask R-CNN + BFPN [20] 50.19M 354.97G 40.5(36.5) 62.0(58.8) 44.5(39.3)
Mask R-CNN + EBFPN 50.32M 354.58G 40.9(37.1) 62.8(59.5) 44.5(39.7)

Table 5: Experiments on stronger backbones. Detection/Instance segmentation on COCO
test-dev.

.
Method Params Flops mAP mAP.5 mAP.75

Mask R-CNN [9] 44.18M 275.58G 38.0(34.7) 58.9(55.8) 41.4(36.9)
Mask R-CNN + BFPN [20] 44.44M 276.63G 39.2(35.7) 61.2(57.8) 42.3(37.8)
Mask R-CNN + EBFPN 44.57M 276.24G 40.4(36.9) 62.9(58.9) 43.5(38.8)

Table 6: Experiments on a longer training schedule (3×). Detection/Instance segmentation
on COCO test-dev.

or two orders of magnitude smaller than that of the ‘input’. This implies that the globally
aggregated output features and computed relations are almost the same for different query
positions. On the other hand, our new formulation makes the outputs and relations to be
discriminative across different query positions. These are important for the high-level vision
tasks, leading to produce significantly better results than in aforementioned study [23].

Despite using the non-local block [23], we note that the cosine distance values of ‘att’ are
relatively high on cityscapes [5]. Recent studies [7, 13, 24] also show similar visualization
results. This is possible because the dataset consists only of road driving scenes. Compared
to natural scenes [19, 27], driving scenes have a standard perspective geometry [16] and
repeating positional patterns [4, 28], allowing the module fairly easily to capture query-
specific relationships. However, the output cosine distance values and final segmentation
performances are still significantly lower than ours, meaning that our formulation better
captures finer relationships.

2.3 Experiments on stronger backbones
To determine whether the proposed method performs well on stronger networks, we adopt
ResNet101 and HRNetV2 [22] for the backbone and use Mask-RCNN as the detection head.
These results are in Table 5. We find that our method also works well on stronger backbones.

2.4 Experiments on longer training schedule
In general, a longer training schedule improves the performance of the model. To iden-
tify whether our method indeed enhances the capability of modeling long-term contexts or
merely accelerates training, we conduct experiments on a longer training schedule. Specif-
ically, we extend the total training epoch three times (i.e., 36 epochs). These results are
summarized in Table 6 and Table 7. We observe that our method consistently brings further
improvements over the baselines for both Mask-RCNN and Panoptic FPN (both with the
ResNet50+FPN backbone), which confirms its enhanced capability of modeling long-term
contexts.
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.
Method Params Flops PQ PQTh PQSt

Panoptic FPN [9] 45.82M 275.58G 40.5 47.2 29.5
Panoptic FPN + BFPN [20] 46.08M 276.63G 41.2 47.8 31.9
Panoptic FPN + EBFPN 46.21M 276.24G 42.6 48.3 33.3

Table 7: Experiments on a longer training schedule (3×). Panoptic segmentation results on
COCO val.

.
Method Params Flops mAP mAP.5 mAP.75

M R-CNN [9] 44.18M 275.58G 37.2(34.1) 58.9(55.4) 40.3(36.2)

M R-CNN + BFPN [20] 44.44M 276.63G 38.1(34.8) 60.3(57.1) 41.5(37.1)

M R-CNN + BFPN (Dconv [6]) 44.81M 275.74G 38.0(34.8) 60.1(56.8) 41.1(37.3)

M R-CNN + BFPN (GC [2]) 44.70M 275.59G 37.8(34.6) 60.4(56.8) 40.7(36.9)

M R-CNN + BFPN (SE [12]) 44.44M 276.63G 38.1(34.8) 59.8(56.4) 40.8(36.8)

M R-CNN + EBFPN 44.57M 276.24G 39.2(35.7) 61.7(57.7) 42.7(38.1)

Table 8: Comparison with other widely adopted context aggregation modules [2, 6, 12] on
detection models. We report the detection/instance segmentation scores on COCO test-dev.

2.5 Comparison with other context aggregating modules
We add more comparisons with other BFPN variants where the NL part is replaced by de-
formable convolution (DConv), a GC module, and a SE module. As shown in Table 8, the
proposed EBFPN significantly outperforms these other methods while using a comparable
number of parameters and FLOPs.

2.6 Memory and inference speed comparisons
We report memory (G) and inference speed (fps) here. We use a Tesla V100 GPU, In-
tel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz. Due to the feature relation computation,
the non-local and our module slightly decrease the inference speed: Mask-RCNN (1.5 G
/ 16.8 fps), Mask-RCNN + BFPN (1.7 G / 15.8 fps), and, Mask-RCNN + EBFPN (1.8
G / 15.5 fps). We note that our design is not optimized for speed nor memory, and better
speed/accuracy tradeoffs could be achieved by adopting recent optimization techniques (e.g.,
axial-decomposition, LSH-hashing), which is beyond the scope of this paper but is our future
direction.

3 Qualitative Analysis

3.1 Feature visualization
We provide more visualization results of the learned feature relations in Fig. 1. Unlike the
non-local case [23], our new formulation learns diverse query-specific relations, including
both intra-class and inter-class relationships. Moreover, in Fig. 2, we visualize how the cap-
tured relationships are reflected in the final prediction. Compared to the non-local case [23],
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Figure 1: We show learned relations on Pascal Context. Our formulation captures both intra-class and inter-class
relationships while the non-local method can only model salient information.
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Figure 2: We show how the captured relations (i.e., attention) of the ‘+’ sign marked in the input image are reflected
in the final prediction. We use Pascal Context.

we observe that our formulation better exploits necessary neighboring features in different
scenarios. We find this could support the model for more accurate predictions in ambiguous
regions.

3.2 Output visualization
To assess the qualitative impact of our two instantiations further, we provide visual results
on both semantic segmentation and panoptic segmentation. We demonstrate that our new
formulation significantly improves the baselines on various datasets [5, 17, 19, 27].

3.2.1 Semantic segmentation

We use ResNet50-FCN [8] as a baseline. We remove the last two down-sampling operations
and adopt the multi-grid dilated convolutions [3]. We append our module at the end of FCN.
We use Pascal Context [19], Ade20K [27], and Cityscapes [5] to obtain visual results, which
are shown in Fig. 3, Fig. 4 and Fig. 5, respectively. It is readily apparent that our predictions
are more semantically accurate and spatially consistent compared to the baseline, demon-
strating the efficacy of the non-locally aggregated context and relative position information.

3.2.2 Panoptic segmentation

We adopt PanopticFPN [14] (with ResNet50 + FPN backbone) as a baseline. We then ap-
ply the proposed EBFPN. We use COCO val [17] for visualization. In Fig. 6, we observe
significant visual improvement when the EBFPN approach is applied to the baseline.

8

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, and Yuille} 2014

Citation
Citation
{Zhou, Zhao, Puig, Fidler, Barriuso, and Torralba} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Chen, Papandreou, Schroff, and Adam} 2017

Citation
Citation
{Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, and Yuille} 2014

Citation
Citation
{Zhou, Zhao, Puig, Fidler, Barriuso, and Torralba} 2017

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Kirillov, Girshick, He, and Doll{á}r} 2019{}

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014



Figure 3: Qualitative improvement by integrating our module into the FCN [8]. We use Pascal Context.
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Figure 4: Qualitative improvement by integrating our module into the FCN [8]. We use ADE20K.
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Figure 5: Qualitative improvement by integrating our module into the FCN [8]. We use Cityscapes.
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Figure 6: Qualitative improvement by integrating EBFPN into the PanopticFPN [14]. We use COCO.
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