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In this supplementary material, we provide additional information on the following top-
ics.

1. Detailed framework in Section 1 for explicit explanation;

2. Detailed experiments configurations in Section 2;

3. More extensive experiments on CIFAR-10, CIFAR-100, ImageNet-100, MS COCO,
PASCAL VOC, and Cityscapes to demonstrate the effectiveness of our SPCL in Sec-
tion 3

4. More visualizations of our SPCL pre-trained features distribution space for explicit
interpretation in Section 4;

5. Visualization of cluster quality with different batch size and number of prototypes in
Section 5;

6. Visualization of cluster quality with different temperature in Section 6;

7. Influence of symmetric/asymmetric losses in Section 7.
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1 Detailed Framework
We provide the main framework of the proposed Siamese Prototypical Contrastive Learning
in Figure 1. The first step of our method is to group the embedded features into separate
clusters in an unsupervised manner. This is achieved by the simple k−means algorithms,
where the number of prototypes K is a preset hyper-parameter. Concretely, we warm-up
the feature extractor f to obtain the capability to extract features roughly (in this paper, we
employ the standard SimCLR framework to complete this). After that, at the beginning of
every epoch, we split the dataset X into mini-batches. For each mini-batch, we draw an
augmentation t ∼ T and extract the features of the augmented samples. We concatenate
all the features and conduct the clustering algorithm to obtain the set of prototypes C =
ccc1, . . . ,cccK , where ccc is the vector of index recording samples of the cluster c.

Next, we draw an anchor prototype p and sample a mini-batch X p = {xxxp
n}N

n=1 from cccp;
Then we draw samples that do not belong to prototype p, i.e. from C \ {cccp}. With slight
abuse of notation, we denote this mini-batch with X q = {xxxq

n}N
n=1, where q stands for any

prototypes that are not p. For each sample in xxxp,xxxq, we acquire its two augmented views
x̃xxc

i , x̃xx
c
j and the feature representations hhhc

i ,hhh
c
j in the embedding space. After that, we apply

a Siamese-style metric loss to minimize the agreement between the intra-prototype feature
representations, and maximize the agreement between the inter-prototype representations.
For the contrastive loss, we use a small neural network projection head gc(·) that maps the
extracted representations hhh to the embeddings zzz.

In order to guide the views of one sample to its corresponding prototype, we introduce
the prototypical cross-entropy framework, as shown in Figure 2. Specifically, we use a
linear projection head gp(·) that maps the representations to the label, i.e. the corresponding
prototype (label) of the sample. The prototypical cross entropy loss term is helpful when the
similarity between views is small, i.e. s(zzz,zzz′) = 0, and the contrastive loss term only produce
gradients with trivial magnitude.
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Figure 1: Main framework for SPCL.
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2 Detailed Experiments Configurations
In this section, we provide the detailed experiments configurations of pre-training and down-
stream tasks setup on various benchmarks.
CIFAR 10/100. For CIFAR-10/100 [14] pre-training, we closely follow SimCLR [2] and
use the same data augmentation, i.e., random crop and resize (with random flip), color
distortions, and Gaussian blur. For the encoder network ( f (·)) we experiment with three
commonly used encoder architectures, i.e., ResNet-18, ResNet-50, and ResNet-101. As the
optimizer, we use LARS [24] with learning rate of 1.0 and weight decay of 10−6. We use
linear warmup for the first 10 epochs, and decay the learning rate with the cosine decay
schedule. We train at batch size 512 for 1000 epochs, using 512 prototypes for clustering.
For clustering, we adopt the faiss library [11] for efficient k-means clustering, where it takes
1.5 seconds per epoch during the pre-training. The whole training time is 10 hours using 8
Tesla V100 GPUs. After pre-training, we implement the linear evaluation on the pre-trained
representations.
ImageNet-1K. For ImageNet-1K [7] of 0.32 million total images pre-training, following [4,
21], we train it for 200 epochs. We use LARS with an initial learning rate of 1.0 and weight
decay of 10−6 with the cosine decay schedule. We train at a batch size of 1024, using 2048
prototypes in our clustering stage. The clustering only takes 6.5 seconds per epoch. The
clustering only takes less than 1300 seconds in total, which is fairly negligible compared to
the whole training time (482 hours using 8 Tesla V100 GPUs).
ImageNet-100. For the ImageNet-100 pre-training, we use a subset of ImageNet-1K that
contains randomly selected 100 classes following CMC [18], MoCHI [12]. The rest of the
settings (including optimizer, weight decay, etc.) are the same as our ImageNet-1K training.
The clustering only takes 3.2 seconds per epoch. The clustering only takes less than 640
seconds in total, which is fairly negligible compared to the whole training time (145 hours
using 8 Tesla V100 GPUs).
MS COCO. For COCO of 118k images totally, we use an initial learning rate of 0.3. We
adopt SGD as the optimizer and we set its weight decay and momentum to 0.0001 and 0.9.
Both pre-training models are optimized with a cosine learning rate decay schedule and a
mini-batch size of 1024. We use 2048 prototypes during the clustering stage. We train
800 epochs for COCO, which is a total of 92k iterations. The clustering only takes 2.5
seconds per epoch. The clustering only takes less than 2000 seconds in total, which is fairly
negligible compared to the whole training time (234 hours using 8 Tesla V100 GPUs). After
pre-training, we evaluate object detection and instance segmentation by fine-tuning a Mask
R-CNN detector (FPN-backbone) in Detectron 2 on COCO train2017 split with standard
1× schedule and evaluating on COCO 5k val2017 split.
PASCAL VOC. Following DenseCL [21], we use MS COCO [23] and ImageNet-1K [7]
for separate pre-training. Then, we evaluate object detection by fine-tuning a Faster R-CNN
detector (C4-backbone) on the VOC trainval07+12 [8] set with standard 2x schedule in
Detectron 2 and testing on the VOC test2007 set. We also evaluate semantic segmentation
by fine-tuning an FCN model [16] on VOC train_aug2012 set for 20k iterations and
testing on val2012 set.
Cityscapes. For pre-training, we closely follow [21], and perform the pre-training on COCO
and ImageNet-1K, separately. We apply the same pre-training setting as we set in the pre-
training for object detection. We evaluate semantic segmentation on Cityscapes [6] dataset
by training an FCN model on train_fine set for 40k iterations and test on val set.
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3 More Experiment Results
CIFAR-10. In Table 1, we report the top-1/top-5 accuracy of image classification on CIFAR-
10 and compare it with SimCLR [2] using three backbones (ResNet-18, ResNet-50, ResNet-
101). The results are averaged over 5 independent trials.

Table 1: Top-1 and top-5 accuracy on the CIFAR-10 dataset.
Method Arch. top-1(%) top-5(%)

SimCLR ResNet-18 89.80 99.75
SPCL ResNet-18 999444...111222(↑ 4.32) 999999...888000(↑ 0.05)
SupCon ResNet-18 94.90 -
SimCLR ResNet-50 92.00 99.81
SPCL ResNet-50 999444...444222(↑ 2.42) 999999...888666(↑ 0.05)
SupCon ResNet-50 96.00 -
SimCLR ResNet-101 93.06 99.85
SPCL ResNet-101 999555...333222(↑ 2.26) 999999...999000(↑ 0.05)

Table 2: Top-1 and top-5 accuracy on the CIFAR-100 dataset.
Method Arch. top-1(%) top-5(%)

SimCLR ResNet-18 57.26 85.69
SPCL ResNet-18 666999...666999(↑ 12.43) 999222...222444(↑ 6.55)
SupCon ResNet-18 71.90 -
SimCLR ResNet-50 61.58 88.11
SPCL ResNet-50 777333...999777(↑ 12.39) 999333...222444(↑ 5.13)
SupCon ResNet-18 76.50 -
SimCLR ResNet-101 62.98 88.79
SPCL ResNet-101 777555...333666(↑ 12.38) 999333...333888(↑ 4.59)

CIFAR-100. Similar to CIFAR-10, the top-1 and top-5 accuracy results using three back-
bones (ResNet-18, ResNet-50, ResNet-101) on CIFAR-100 are reported in Table 2. The
results are averaged over 5 independent runs.

Compared to SupCon [13], our SPCL achieves comparable results on CIFAR-10 and
CIFAR-100 in terms of top-1 accuracy. This further shows the effectiveness of our SPCL,
although we did not use the ground-truth as the supervision.

Table 3: Top-1 and top-5 accuracy on the ImageNet-100 dataset. Bold and underline denote
the first and second place.

Method Arch. top-1(%) top-5(%)

MoCo[10] ResNet-50 72.80 91.64
Biased CMC [18] ResNet-50 73.58 92.06
Debiased CMC [5] ResNet-50 74.60 92.08
MoCo+align/uniform[20] ResNet-50 74.60 92.74
SPCL (ours) ResNet-50 777444...777222(↑ 0.12) 999222...777888(↑ 0.04)

ImageNet-100. We also report the performance on ImageNet-100 which has be adopted by
former studies, the classes in this sub-set are chosen as [5, 20]. The results are reported
in Table 3, our SPCL outperforms MOCO by 1.92%, 1.14% in terms of top-1 and top-
5 accuracy. We also achieve better result than [5] and [20], which further demonstrates
the advantage of our SPCL on achieving the uniformity in the prototype-level instead of
instance-level.
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Object detection. In Table 4, we report the object detection result on PASCAL VOC [8]
and COCO. The metrics include the VOC metric AP50 and COCO-style AP and AP75. The
results are averaged over 5 independent trials. As can be seen, the COCO pre-trained SPCL
achieves the new state-of-the-art in terms of AP75 and AP50 compared with MoCov2 and
DenseCL. The ImageNet pre-trained SPCL outperforms MoCov2 by a large margin, 1.55%
and 1.71%, in terms of AP and AP75. When pre-trained on ImageNet, our SPCL achieves
comparable performance with DenseCL [21] and SCRL [17]. These two methods are par-
ticularly designed and focusing on pixel-level and spatial-level contrastive learning, respec-
tively. For evaluation on COCO, our ImageNet pre-trained SPCL outperforms the MoCov2
by 0.85%, 0.22% and 0.90%. The COCO pre-trained SPCL achieves new best results in
terms of APb

75 and APb
50 pre-trained on COCO. These results shows the advantage of our

SPCL as a general proposal pre-training method, and the capacity of transferring learned
representations to different vision tasks.
Instance Segmentation. In Table 4, we also report the results on COCO for evaluation.
When pre-trained on both ImageNet and COCO, our SPCL outperforms the PCL [15] and
DenseCL [21] in terms of APm

50. We also achieve competitive results compared with [4, 21]
in terms of APm and APm

75 on the instance segmentation downstream task.
Semantion Segmentation. The semantic segmentation results on the PASCAL VOC and
Cityscapes are reported in Table 4. When pre-trained on ImageNet, our SPCL outperforms
MoCov2 by a large margin, i.e., 1.85% mIoU. We are comparable to the expert method
DenseCL, although we do not apply level of pixels by taking into account the correspondence
between local features. The COCO pre-trained SPCL is competitive with the DenseCL and
outperforms the MoCov2 by 3.05% mIoU. For evaluation on Cityscapes, we observe the
same performance boost with our SPCL compared with MoCov2, i.e., 1.22% pre-trained on
ImageNet, and 1.85% on COCO. Our SPCL also achieves competitive performance.

Table 4: Comparison results of Object Detection (OD) fine-tuned on PASCAL VOC/COCO,
Instance Segmentation (IS) on COCO, and Semantic Segmentation (SS) on VOC/Cityscapes.

VOC (OD) COCO (OD) COCO (IS) VOC (SS) City (SS)
Method AP AP50 AP75 APb APb

50 APb
75 APm APm

50 APm
75 mIoUVOC mIoUCity

Random Initialization 32.80 59.00 31.60 32.80 50.90 35.30 29.90 47.90 32.00 40.70 63.50

Models pre-trained using ImageNet-1K:
Supervised (CE) 54.20 81.60 59.80 39.70 59.50 43.30 35.90 56.60 38.60 67.70 73.70
SimCLR [2] 51.50 79.40 55.60 — — — — — — — —
BOYL [9] 51.90 81.00 56.50 — — — — — — — —
SwAV [1] 55.40 81.50 61.40 37.60 57.60 40.30 33.10 54.20 35.10 — —
MoCo [10] 55.90 81.50 62.60 40.70 60.50 44.10 35.40 57.30 37.60 — —
MoCov2 [4] 57.00 82.40 63.60 39.80 59.80 43.60 36.10 56.90 38.70 67.50 74.50
MoCHi [12] 57.50 82.70 64.40 39.40 59.00 42.70 34.50 55.70 36.70 — —
SimSiam [3] 57.00 82.40 63.70 39.20 59.30 42.10 34.40 56.00 36.70 — —
SCRL [17] 57.20 888333...888000 63.90 — — — — — — — —
PCL [15] — — — 444111...000000 666000...888000 44.20 35.60 57.40 37.80 — —
DenseCL [21] 555888...777000 82.80 65.20 40.30 59.90 44.30 333666...444000 57.00 333999...222000 666999...444000 75.70
SPCL(ours) 58.55 82.63 666555...333111 40.65 60.02 444444...555000 36.21 555777...444111 38.57 69.35 777555...777222

Models pre-trained using COCO:
MoCov2 [4] 54.70 81.00 60.60 38.50 58.10 42.10 34.80 55.30 37.30 64.50 73.80
DenseCL [21] 555666...777000 81.70 63.00 333999...666000 59.30 43.30 333555...777000 56.50 333888...444000 67.50 75.60
SPCL(ours) 56.54 888111...777666 666333...111555 39.54 555999...444555 444333...444222 35.65 555666...888999 38.31 666777...555555 777555...666555

4 Visualization of Feature Distributions
We provide more visualization of feature distributions under different datasets and condi-
tions. Specifically, we implement the ResNet-50 pre-trained models on the 10 classes from
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CIFAR-10 dataset, 20,100 classes chosen from the CIFAR-100 dataset. Then we project
the pre-trained representations of 2048-dimension onto the 2-dimension space using the t-
SNE [19], as shown in Figure 3, 4, and 5. We can observe that the SPCL pre-trained repre-
sentations are distributed more uniformly on the space in terms of 10,20,100 classes. This
means that each cluster is clustered more inside, and different clusters are scattered more
globally in the embedding space.

Figure 3: Visualization of the SimCLR (Top Row) and SPCL (Bottom Row, ours) pre-
trained representations (Left Column) and features (Right Column) after projection head
from 10 classes in the CIFAR-10 dataset.

Citation
Citation
{vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2008



8 SHENTONG MO, ZHUN SUN, AND CHAO LI: SPCL

Figure 4: Visualization of the SimCLR (Top Row) and SPCL (Bottom Row, ours) pre-
trained representations (Left Column) and features (Right Column) after projection head
from 20 classes in the CIFAR-100 dataset.
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Figure 5: Visualization of the SimCLR (Top Row) and SPCL (Bottom Row, ours) pre-
trained representations (Left Column) and features (Right Column) after projection head
from 100 classes in the CIFAR-100 dataset.
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5 Visualization of Cluster Quality with Different Batch
size and Number of Prototypes

In this section, we further evaluate the quality of the pre-trained feature distributions, us-
ing different batch sizes and number of prototypes in Figure 6. As can be seen, with the
prototypes of 512, our SPCL pre-trained representations are indeed more centralized inside
each separate cluster compared to the prototype of 256. This infers that the prototypes are
indeed crucial for our SPCL to help learn meaningful representations. From the visualiza-
tion of feature distributions using batch sizes of 256,512,1024, and 2048, we can observe
an insignificant change of the quality of learned representations. This further shows the
robustness of our SPCL to the choice of the batch size.

CIFAR-10

bs=512bs=256 bs=1024 bs=2048

Figure 6: Visualization of the SPCL pre-trained representations using 256 (Top Row) and
512 (Bottom Row) prototypes and 256 (First Column), 512 (Second Column), 1024
(Third Column), and 2048 (Last Column) batch sizes for 10000 samples in CIFAR-10
test set.

6 Visualization of Cluster Quality with Different
Temperature

In addition, we evaluate the quality of the pre-trained feature distributions for different tem-
peratures during our SPCL pre-training stage in Figure 7. As the temperature τ increases,
it gives a larger penalty to the samples closed to the anchor, which leads to the increase of
the TP distance and the decrease of the FN distance. This leads to our SPCL pre-trained
representations more concentrated and uniformly distributed in the feature space. When τ is
too small, there is little penalty to the samples closed to the anchor, which would cause two
clusters coincide in the space due to the increase of the FN distance.
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CIFAR-10

t=0.5t=1 t=0.1 t=0.05 t=0.01

Figure 7: Visualization of the SPCL pre-trained representations using different temperatures,
from left to right: τ = 0.01 (First Plot), τ = 0.05 (Second Plot), τ = 0.1 (Third Plot),
τ = 0.5 (Fourth Plot), and τ = 1 (Last Plot) for 1000 samples in CIFAR-10 test set.
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7 Influence of Symmetric/Asymmetric Losses
Intuitively, as long as the the number of prototypes does not match the number of classes in
the down-stream task, noise in the semantic structure will be introduced. In order to render
this phoneme, we implement a symmetric prototypical cross-entropy loss, defined in [22],
to overcome the noisy prototypes. We conduct experiments on CIFAR-100 using 512 proto-
types, and the symmetric loss achieves better performance (74.04%, 93.35%) compared to
asymmetric loss (73.97%, 93.24%) in terms of top-1 and top-5 accuracy. In order to inter-
pret the influence of symmetric and asymmetric losses, we also evaluate the quality of the
pre-trained feature distributions when applying symmetric and asymmetric losses during our
SPCL pre-training stage in Figure 8. As can be seen in the CIFAR-10 test set (First/Second
Plots), with the introduction of symmetric loss in our prototypical cross entropy loss module,
the pre-trained representations are indeed more centralized inside each separate cluster. We
can observe the similar improvement in terms of the quality of our SPCL pre-trained feature
distributions in the CIFAR-100 test set on the Third/Last Plots in Figure 8.

Asymmetric Symmetric

Figure 8: Visualization of the SPCL pre-trained representations using asymmetric
(First/Third Plots) and symmetric (Second/Last Plots) prototypical cross entropy loss in
CIFAR-10 (First/Second Plots) and CIFAR-100 (Third/Last Plots) test set.
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