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S.1 Understanding Training Behaviour
In Fig. 1, we demonstrate the training behaviour of the proposed in-train quantization approach.
We highlight the training curves for the ablation study performed in Tab. 1 of the main paper,
to understand the influence of the scaling factor v on the final prediction accuracy and BOPs
reduction. We consider ResNet20 and ResNet56 trained on the CIFAR-10 and CIFAR-100
datasets to observe the improvement in accuracy and reduction in BOPs. For the 4-bit uniform
quantization (indicated in blue), we observe that the BOPs remain constant across the training
steps. We constrain our mixed-precision models to a achieve 2× BOPs reduction compared
to the uniform 4-bit model (see Tab. 1 of the main paper for final quantitative improvements).
We train uniformly quantized and constrained mixed-precision models for 300 epochs with a
step learning decay policy. For uniform quantization, we decay the learning rates by 0.1 at
80, 160 and 240 epochs. For the constrained mixed-precision models, we decay the learning
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Figure 1: Comparison of in-train quantization behaviour for ResNet20 (left) and ResNet56
(right) with uniform quantization and different scaling factors.

rate at 120, 180 and 240 epochs. We ensure convergence in the quantization strategy before
the learning rate decay. For our constrained mixed-precision models (indicated by red, green,
orange), we observe reduction in BOPs across the training steps. We increase the scaling
factor v to achieve the desired BOPs constraint. For ResNet56, we observe 1.2×, 1.6×
reduction in BOPs compared to the uniform 4-bit configuration for scaling factor v= 1.0,
2.0, respectively, with no degradation in accuracy. We demonstrate the weight distributions
indicating the effectiveness of progressive quantization in the supplementary material Sec. S.2.

In Fig. 2 and Fig 3, we compare the distribution of Wq for our approach against the
distribution under uniform quantization. We observe that uniform quantization training [2]
does not change the number of unique values (peaks) across the training steps, allocating a
fixed number of values from the start of the training. In our approach, we observe progressive
quantization, starting from a smooth normal distribution and slowly converging to discrete
peaks of quantized values. This allows larger gradient flow during the initial stages of the
training and improves the trade-off between prediction accuracy and HW complexity for the
resulting mixed-precision neural network.

(a) uniform 2-bit conv2_9 (b) uniform 4-bit conv2_9

Figure 2: Distribution of quantized weights Wq for uniform PACT [2]

In Fig. 4, we compare the resulting quantization strategy for the BOPs optimized (top)
and latency optimized (bottom) mixed-precision models. We observe lower bit-widths for
the latency optimized mixed-precision strategy for the shallower layers. In the deeper layers,
we observe higher assignment of bit-width for the activations. This is due to deeper layers
being less computationally intensive, allowing more bit-widths to be allocated to maintain
prediction accuracy, without adding too much latency. Particularly, activation bit-widths are
increased, which have smaller volumes in the deeper layers of the CNN.
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(a) 8bit→3-bit conv2_7 (b) 8bit→4-bit conv2_9

Figure 3: Distribution of quantized weights Wq for our proposed approach
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Figure 4: Comparsion of layerwise bit-width strategy for BOPs (top) and latency (bottom)
optimized in-train quantization.

S.2 Mixed Precision DeepLabv3 for Semantic
Segmentation

The semantic segmentation task is critical to applications in robotics and autonomous driving.
High-quality segmentation is computationally complex by several orders of magnitude, when
compared to classification tasks. This complexity is due to the typically larger input image
resolution and the additional layers needed for semantic segmentation (bottleneck, ASPP
block and decoder layers). For the DeepLab-based CNN architecture, we use ResNet18 as
the backbone network and the last two residual blocks use dilation rate of 2. The Atrous
Spatial Pyramid Pooling (ASPP) block contains dilation rates of {1, 8, 12, 18}. Our approach
produces 0.7 pp better mean average over union (mIOU) with 15% lower BOPs and similar
training cost.
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Table 1: Comparison of our approach on DeepLabV3 based semantic segmentation with
uniformly quantized models.

Model/ Quant. BOPs mIOU Training Cost
Dataset (G) (%) (GPU hours)∗∗

D
ee

pL
ab

v3
C

ity
Sc

ap
es 8bit [2] 5365 66.6

26hrs 1min
4bit [2] 1469 65.4

Ours 1254 66.1 28hrs 23min
∗∗ Training cost is measured on a NVIDIA V100 GPU

S.3 Execution Schedule Awareness
To demonstrate the sensitivity of the optimal quantization strategy with respect to the target
hardware, we can formulate GP regressors which capture different scheduling schemes on
the inference hardware. For our target BISMO bit-serial accelerator, convolutional and dense
workloads are transfromed into GEMM workloads.

The convolution workloads can be lowered into a general matrix multiplication (GEMM),
by representing the W l and Al−1 tensors as 2-D matrices MatW and MatA, according to Eq. (1).
The dimensions m and n represent the rows and columns of each matrix.

MatW ∈ RmW×nW , MatA ∈ RmA×nA

mA = nW =Ci×Kx×Ky,

mW =Co, nA = Xo×Yo

(1)

Al = Conv(W l ,Al−1) = MatW ×MatA (2)

Note that in Eq. (2), transposing both matrices and switching their order would also
produce the convolution result. Hardware accelerators typically exploit data reuse to minimize
the number of costly off-chip DRAM calls they need to perform during execution. For
example, if one column from the right-hand side (RHS) matrix is to be computed against
every row from the left-hand side (LHS) matrix, the accelerator can load the RHS column
once and stream through all the LHS rows, until the column has been used exhaustively for
the GEMM computation. The BISMO scheduler executes GEMM workloads in this manner,
although it is agnostic to the workload being provided. We could then consider forcing the
weights W l ∀ l ∈ L to remain in the RHS matrix throughout the execution, which would result
in a weight-reuse schedule (WRS). Conversely, maintaining activations Al−1 in the RHS,
would result in an activation-reuse schedule (ARS).

To verify the HW-awareness of our method, we consider the contrasting ARS and WRS
schemes, which favor the reuse of either activations or weights, respectively. We construct
GP regressors which can capture the differences between these schedules and analyse the
effect of these subtle HW-specific details on our in-train quantization method. With this, we
verify the degree of HW-awareness possible through our differentiable GP regressors and
in-train quantization technique.

In Fig. 5-a, we execute ResNet18 for ImageNet on an 6×6×256 BISMO array [5]. The
weight and activation bits are set to 4-bits for all layers (uniform). We see that reusing the
smaller volume of weights at the start of the CNN leads to WRS performing better, while
ARS improves the execution for the latter half of the network, where reusing the activations
is more beneficial. This is due to the fact that the total redundant reads are reduced when
reusing the smaller volume datatype, as a larger portion of it can be stored on-chip and used
exhaustively, leading to fewer total processing passes.
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(a) ResNet18-ImageNet (bW ,bA) = (4, 4)
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(b) ResNet18-ImageNet (bW ,bA) = (2, 8)
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(c) ResNet18-ImageNet (bW ,bA ) = (8, 2)

Figure 5: ARS and WRS execution of ResNet-18 for ImageNet with uniform quantization.
The results motivate the in-train quantization method to make schedule-aware decisions on
layer-wise, datatype bit-widths, as shown in the paper.
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In Fig. 5-b and -c, we execute ResNet18-ImageNet again, once with (bW ,bA) = (2, 8) and
then with (bW ,bA) = (8, 2), for all layers. It can clearly be observed that with the expensive
cost for reading the 8-bit wide datatype, the corresponding schedule which reuses that datatype
has a significantly improved execution compared to the other. For example, ARS performs
better than WRS for all layers, when the activations are 8-bit wide (Fig. 5-b). Conversely,
WRS beats ARS when bW = 8 (Fig. 5-c). Therefore, reusing the more costly datatype brings
an advantage to the execution schedule. It is important to note, that all runs presented in Fig. 5
are on the exact same HW, but with a different schedule. This indicates that simply knowing
the theoretical peak operations per second (OPS) of a hardware accelerator is not sufficient to
have real HW-awareness. Subtleties, such as the schedule and datatype reuse highly influence
the execution.

In the paper, we showed that our in-train quantization technique is aware of the accelerator
as well as the execution schedule. The in-train quantization method benefits from the
differentiable HW-metrics provided by the GP regressor, allowing it to consider such subtleties
of the HW and make more HW-friendly decisions, which result in benefits on real synthesized
HW.

S.4 Quantization-Aware Adversarial Training

To realize adversarially robust mixed-precision neural networks, we target two objectives:
1) compressing a model to reduce the computational complexity of a neural network, and
2) increasing the robustness against an adversary manipulating input data. Both can be
effectively achieved by formulating a joint optimization problem. We adopt the concept of
fast adversarial training [6], but learn the number of unique values |U | ∈ {1,256} required
to represent weights and activations for each layer with our proposed method. We derive
the quantized value x̃q based on the proposed progressive quantization approach in Sec. 3.2
from the main paper. We detail the quantization for weights and activations as Wq and Aq in
Eq. (3) and Eq. (4), respectively. We clip the activations A between the range [0,+c] due to the
non-linear activation function (ReLU) and approximate them as Aq ∈ {0, 1, 2, ..., (2b−1)},
similar to [2].

Aq = Round(Clip(A,0,c) · (2
b−1)

c
) · c

(2b−1)
(3)

We clip the weight values using a tanh() function and limit the range between [-1, 1],
similar to the work in DoReFa-Net [7]. We approximate the continuous domain of weights W
into the discrete values Wq ∈ { − (2b−1−1), ...,−2, −1,0, +1, +2, ..., (2b−1−1)}.

Wq = 2
(
Round(Cliptanh(W ) · (2b−1−1)) · 1

(2b−1−1)
)
−1 (4)

Cliptanh(x) =
tanh(x)

2max(tanh(x))
+

1
2

(5)

Attacks against a neural network are described as finding a minimal perturbation δ of
an image I (forming the the adversarial example Iadv = I +δ ) with label Y that changes the
outcome of a given model represented by the prediction function f (·) [3]. For adversarial
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training, we make use of this generation principle, while maximizing the loss L for a given
perturbation budget ε:

min
W,M

E
(I,Y )∼D

[
max
|δ |≤ε

L( f (I +δ ,Wq),Y )
]
. (6)

Our in-train quantization approach aims to achieve a balanced trade-off between natural
accuracy Accnat (calculated from the ground-truth labels Y for the corresponding images I),
adversarial robustness Accadv, and model complexity ϕ during the training process, rather than
introducing separate (post-training) phases for finding the quantization strategy with iterative
fine-tuning. In principle, one may use different methods for generating adversarial examples
for training, such as FGSM [3], PGD [4] and CW [1]. Wong et al. [6], however, show that
using FGSM in combination with random initialization is particularly effective. With this, the
cost of training, measured in GPU hours, with one iteration of FGSM, is significantly lower
than with other variants like PGD-based adversarial training [4]. We integrate the in-train
update operations of the unique values U for quantized weights Wq and activations Aq in the
FastAT procedure as shown in Alg.1.

Algorithm 1: Joint learning of quantization strategy and adversarial training.
Require :Training samples D, perturbation strength ε , step size α

1 Initialize θ , |U | ← 256
2 for E poch = 1, . . .Nepochs do
3 for Batch B⊂D do
4 Initialize perturbation δ ← random_uni f orm(−ε,+ε)

5 Sample a batch of K examples {(I(1),Y (1)), · · · ,(I(K),Y (K))} from data
distribution.

6 Use FGSM attack to generate perturbations on batch K to update δ

7 δ ← δ +α · sign(∇δL( f (I +δ ,Qunat(W )),Y )
8 δ ←max(min(δ ,ε),−ε)
9 Iadv← I +δ

10 Update weights W and unique values |U | using SGD for adversarial images:
11 W ←W −η ·∇WL( f (Iadv,Qunat(W )),Y )
12 if EPrune, Start ≤ E poch≤ EPrune, End then
13 |U | ← |U |−η|U | ·∇|U |L( f (Iadv,Qunat(W )),Y )
14 end
15 end
16 end

During each training step, we generate a uniform random initialization for the adversarial
perturbation as shown in line 4, followed by performing a step into the ascent gradient
direction (line 7) scaled by the step size α . We update the weights and unique values |U | of
the neural network jointly in line 11 for clean and adversarial images, with learning rate η .
During these update steps, the importance scores for trainable unique values for each layer
|U | get accumulated. Line 13 reduces the number of unique values based on a hardware loss
LHW and cross entropy loss Lce (see Sec. 3.2 in the main paper). As shown in line 12, we start
and freeze the quantization strategy at the epoch corresponding to EQuant, Start and EQuant, End
respectively.
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Hyperparameters for Adversarial Training. For the robustness aware mixed-precision
adversarial training (Sec. 4.3), we use random FGSM with strength ε = 8/255 and step size
α = 10/255 to generate adversarial perturbations during the training process. Similar to Wong
et al. [6], we use a cyclic learning rate schedule, which linearly increases the learning rate
from zero up to the maximum learning rate (η = 0.2), and decreases back to zero. A period
of 10 epochs is used, where the maximum is reached at 5 epochs. For evaluating robustness
of the quantized models, the PGD attack is performed with ε = 8/255 and α = 2/255 for 20
iterations.
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