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This supplementary material includes the implementation details of our method (Sec-
tion 1), ablation study performed to investigate how the initialization of Graph Laplacian
weight matrix W affect the performance of proposed AE-L (Section 2), confusion matrices
obtained when our AE-L is applied on the testing data of NTU-60 [16] dataset (Section 3)
and the comparisons between our AE-L and the state-of-the-art supervised and unsupervised
skeleton-based human action recognition methods (Section 4). It is important to note that
the results given in Section 4 are equivalent to the results shown in the main paper Section
4.1, and the table therein provides the quantitative values as summarised in the figure. We
also demonstrate qualitative results comparing the reconstructed skeletons in Section 5.

1 Implementation Details

1.1 Data Pre-processing

We discard the missing time-frames as applied in Predict & Cluster [20]. We normalize
each skeleton in terms of bone-length (in the range of [-1, 1]), followed by a regularization
of the temporal length of each sample by setting it up to 100 time-frames (cutting frames
of longer samples or replicating frames for shorter samples), and finally splitting data w.r.t.
cross-subject, cross-view and cross-setup settings of benchmarks [11, 16]. This procedure
is adapted from Predict & Cluster [20] except from the temporal length of each sample (we
choose 100 time-frames instead of 50) and replication of the frames where instead Predict &
Cluster [20] uses zero padding for the actions having less than their fixed temporal length.
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Figure 1: The learning curves of our AE model. We provide train/test accuracy values
– left pane – and MSE loss – right pane – of our proposed model trained on NTU-60 in
cross-subject protocol. We observe that our model achieves a stable performance at testing
time across training epochs: we claim it to be a favorable characteristic, given the plateau in
performance across training epochs.

1.2 Model Selection and Hyperparameters
Our model consists of a concatenation of three encoder blocks and three decoder blocks
with ReLU activation layers (as depicted in the main paper Section 3.1). Each block is fully-
residual, concatenating 1×1, 1×3, and 1×1 padded convolutional layers with stride 1. The
decoder blocks use transpose-convolutional layers with the application of batch normaliza-
tion layers. It is trained for 100 epochs using Adam optimizer with a learning rate of 10−3

when the batch size is 128. The hidden representation layer of our model is a fully-connected
layer with the size of 2048. We use the features extracted from that layer, which are later
given to the classifiers (i.e., 1-NN protocol [20] or Linear Evaluation Protocol [26] (see the
main paper Section 3.4 for the definitions). In Figure 1, the learning curves of our model
after applying z-normalization are given. As seen in this figure, our model achieves a stable
performance at testing time across training epochs. This is an affirmative characteristic, also
showing that we are able to learn representations without over-training.

1.3 Implementation of Self-supervised Viewpoints Invariance (SSVI)
For the SSVI experiments (see main paper Section 4.2), we rotated the data along the z-axis.
For the fully connected layer of GRL, we apply a sigmoid activation function multiplied
by 2π to match the Euler rotation angle. The GRL loss is an L1 loss calculated between
the original Euler angle of rotations and the predicted Euler angle. Additionally, we use a
penalty term included in the GRL loss and a penalty term for the GRL layer (i.e., the alpha
value depicted in [4]): both are set to 10−3.

2 The effect of initialization of Graph Laplacian Weight
Matrix

In this section, we want to examine how the initialization of Graph Laplacian weight matrix
W affects our proposed method’s performance: AE-L. As mentioned in the main paper, we
want to promote the alignment of skeletal joints, connected through a bone (e.g., an edge
exists if and only if joints are connected). The reason behind this is to inject the knowledge
of skeletal geometry while learning our action representations. This is referred as fixed W, a
binary and symmetric n× n skeleton adjacency matrix, including the connectivity between
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pairs of skeletal joints (as shown in Figure 2 left). n is equal to the number of joints of each
skeleton (e.g., 25 joints for NTU-60 [16] and NTU-120 [11]). The Wi j entries of W are
defined such that Wi j = 1 if and only if the joints i and j are connected through an edge (in
this case a bone), 0 otherwise.

A natural alternative to this approach is randomly initializing the weight matrix W (n×
n). Herein we called this random W, and its range is [0,1]. We compare the performance of
AE-L with fixed W (our proposal) against random W in Figure 2 rightmost. As seen, fixed
W achieves better performance than random W with a margin of 1.5-2.8% for all settings:
cross-subject, cross-view, and cross-setup.

3 Confusion matrices
The confusion matrices for testing our AE-L performance within 1-NN protocol [20] for
datasets NTU-60 [16] (cross-subject, cross-view) are given in Figure 3. In the same figure,
we also report the accuracy score of each action class in the box-plot form.

3.1 Accuracy-per-action class comparison
Our AE-L achieves recognition accuracy above 80% for 8 actions (sitting down, standing up
from sitting position, wearing jacket, taking off jacket, jumping up, falling, walking towards
each other, and walking apart from each other) in NTU-60 cross-subject setting [16].

In NTU-60 cross-view setting [16], our AE-L performs recognition above 90% accuracy
for 13 actions (throwing, sitting down, standing up from sitting position, wearing jacket,
taking off jacket, cheering up, kicking something, one foot jumping, jumping up, salute,
crossing hands in front, staggering, and falling) while class accuracy above 80% is observed
for 41 actions.

There are 3 actions: standing up from sitting position, jumping, and falling for which
AE-L recognizes with nearly 100% accuracy in cross-view setting of NTU-60 [16].

3.2 Accuracy improvements of Laplacian regularization on
cross-subject protocol

As shown in the main paper, AE-L improves the performance of the AE model, showing that
Laplacian regularization supplies some advantages.

NTU-60 [16] NTU-120 [11]
C-Subject C-View C-Subject C-Setup

Fixed W (Ours) 54.1 83.1 42.4 44.7
Random W 52.6 80.3 40.9 42.8

Figure 2: Skeletal Laplacian Regularization. Left: location of the skeletal joints on NTU-
60 [16]. Center: corresponding adjacency matrix W (binary). Right: ablation table on
overall accuracy of AE-L w.r.t. using a fixed Laplacian weight matrix, i.e., skeleton adjacency
matrix (our proposal) or randomized one.
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For NTU-60 cross-subject action classes: brushing hair, drop, reading, wear on glasses,
take off glasses and using a fan and for NTU-120 cross-subject action classes; taking off a
shoe, wearing on glasses, making a phone call, putting the palms together, patting on back
of other person, applying cream on face and kicking backward; we obtained at least +5%
performance gain by involving Laplacian regularization to our AE.

3.3 Accuracy improvements of Laplacian regularization on cross-view
and cross-setup protocols

Additionally, our AE-L performs at least +5% better than our AE for NTU-60 cross-view
and NTU-120 cross-setup actions.

The NTU60 cross-view actions are: eating meal, brushing teeth, brushing hair, dropping,
clapping, reading, tearing up paper, wearing on glasses, taking off glasses, putting on a hat,
taking off a hat, reaching into pocket, hopping, make a phone call, playing with phone, taking
a selfie, checking time, rubbing two hands together, wiping face, putting the palms together,
sneeze/cough, touching head/chest/back, using a fan, punching other person, patting on back
of other person and touching other person’s pocket.

In addition, the NTU-120 cross-setup action classes are: drinking water, eating meal,
putting on a hat, taking off a hat, kicking something, making a phone call, putting the palms
together, kicking other person, hushing, thumbing up, making victory sign, sniffing, balling
up paper, applying cream on face, taking something out of a bag and crossing arms.

Figure 3: Confusion matrices and the corresponding accuracy scores for each action class
obtained when our AE-L is applied with 1-NN protocol on the NTU-60 [16] dataset.
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4 Comparisons with state-of-the-art skeleton-based HAR
Performance comparisons between our AE-L and the state-of-the-art unsupervised and su-
pervised skeleton-based HAR methods on NTU-60 dataset [16] are given in Figure 4 (equiv-
alent to Figure 4 in the main paper). The results in Table 1 provide the quantitative values,
which are summarised in Figure 4.

Our AE-L outperforms all prior unsupervised skeleton-based approaches on the cross-
subject and cross-view settings. Importantly, our learnable representation, although being
unsupervised, allows our method to even surpass a few supervised skeleton-based action
recognition methods: [1, 6, 10, 13, 15, 24].
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Figure 4: Comparisons between our AE-L and SOTA unsupervised and supervised skeleton-
based HAR methods on NTU-60 dataset [16].

Method Classifier Architecture Cross-Subject Cross-View
Rahmani et al. (2016) [13] supervised linear SVM 3D Spatio-temporal interest points 50.1 52.8
Cavazza et al. (2019) [1] supervised linear SVM Kernel-approximating random feat maps 60.9 63.4
Du et al. (2015) [24] supervised softmax Hierarchical RNN 59.1 64.0
Liu et al. (2016) [10] supervised softmax Spatial Temporal LSTM 69.2 77.7
Shahroudy et al. (2016) [15] supervised softmax Part-Aware LSTM 62.9 70.3
Kim et al. (2017) [6] supervised softmax Temporal CNN 74.3 83.1
Zhang et al. (2017) [25] supervised softmax View-Adaptive LSTM 79.2 87.7
Liu et al. (2017) [12] supervised softmax Multi-stream CNN 80.0 87.2
Liu et al. (2017) [2] supervised softmax CNN 83.2 89.3
Yan et al. (2018) [23] supervised softmax Spatio-Temporal GCN 81.5 88.3
Wen et al. (2019) [21] supervised softmax Motif GCN + Variable Temporal Dense Block 84.2 90.2
Li et al. (2019) [8] supervised softmax Actional-structural GCN 86.8 94.2
Shi et al. (2019) [18] supervised softmax 2-stream Adaptive GCN 88.5 95.1
Si et al. (2019) [19] supervised softmax Attention GCN+LSTM 89.2 95.0
Shi et al. (2019) [17] supervised softmax Directed Graph Neural Networks 89.9 96.1
Cheng et al. (2020) [3] supervised softmax Shift GCN 90.7 96.5
Holden et al. (2015) [5] unsupervised linear classifier Denoising AE 61.2 70.2
Zheng et al. (2018) [26] unsupervised linear classifier Adversarial GRU-AE 39.1 48.1
Kundu et al. (2018) [7] unsupervised linear classifier Variational-AE + poseRNN 56.4 63.8
Kundu et al. (2018) [7] unsupervised linear classifier Encoder-GAN + poseRNN 68.6 77.8
Xu et al. (2020) [22] unsupervised linear classifier Contrastive-AE 53.9 63.5
Rao et al. (2020) [14] unsupervised linear classifier Contrastive-AE 58.5 64.6
Li et al. (2021) [9] unsupervised linear classifier Contrastive-GCN 68.3 76.4
Our AE-L unsupervised linear classifier Regularized convolutional, residual AE 69.9 85.4

Table 1: Performance comparisons between our AE-L and the state-of-the-art supervised and
unsupervised skeleton-based HAR methods on NTU-60 dataset [16] in terms of accuracy
(%). The results that our AE-L surpasses are underlined. The best results for the supervised
and unsupervised methods individually are shown in black.
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5 Visualization of the reconstructed skeletons
Figures 5 and 6 present the visualizations of the reconstructed skeletons obtained by applying
our models (AE and AE-L). Blue skeletons represent the input data (of action "Drink Water"
for Figure 5 and "Standing Up" for Figure 6), red and green skeletons are reconstructed by
AE and AE-L, respectively. In these examples, while the effectiveness of our models is the
same, in other words, AE and AE-L both classify the actions correctly, the AE-L makes the
reconstructed skeletons smoother compared to AE.

Figure 5: Action class "Drink Water" in NTU-60 [16] cross-view dataset. Blue: original
data, Red: AE reconstruction, Green: AE-L reconstruction. Columns correspond to differ-
ent time-frames. Both AE and AE-L correctly classify this action sample.

Figure 6: Action class "Standing Up" in NTU-60 [16] cross-view dataset. Blue: original
data, Red: AE reconstruction, Green: AE-L reconstruction. Columns correspond to differ-
ent time-frames. Both AE and AE-L correctly classify this action sample.
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