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Self-Supervised Learning of
Image Scale and Orientation
- supplementary material -

This supplementary material consists of four parts. Section 1 describes a more detailed
process of our PatchPose dataset generation. Section 2 shows our scale and orientation
estimation results on the image matching tasks and in-depth analysis. Section 3 analyzes the
prediction range of scale and orientation compared to the existing methods. Section 4 shows
various qualitative results to verify our model.

1 PatchPose dataset generation

We generate our PatchPose dataset, ex-
tracted from 1,793 images of SPair-71k [10]
from PASCAL-VOC [4]. The PatchPose
dataset consists of two parts, PatchPose-
A and PatchPose-B. Figure 1 shows to
generate an example of the PatchPose,
D = {(I,,I},Ay)})_,. where A, denotes the
ground-truth relative pose from I, to ..
Dataset specification. The PatchPose-A
dataset contains all combinations of scale
and orientation shifts over 36 rotation and
13 scale values. We first produce 2,517,372
patches and then prune them as described
in the next subsection of this supplemen-
tary material. After pruning, we obtain Figure 1: Illustration of training data gener-
2,013,804 patches, which make pairs with ~ation. Each entry of D stores two cropped
their original patches from the original im- Patches extracted about the same keypoint
ages. We split the PatchPose-A dataset into from differently augmented versions of an im-
1,973,527 training pairs, 20,138 validation age and their ground-truth scale/orientation
pairs, and 20,139 test pairs, whose split ra-  differences.

tio is train : val: test = 98 :1:1. The

PatchPose-A dataset has % interval of log,-scale in the range of [—2,2] and ﬁn interval
of orientation in the range of [0,27), covering wide ranges of scale and orientation changes.
In the PatchPose-A dataset, the orientation value is fixed when the scale value varies and
vice versa. The PatchPose-B dataset is designed to evaluate the robustness under simultane-
ous and continuous changes of scale and orientation. Unlike the PatchPose-A, the scale and
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orientation of an image patch are simultaneously transformed by random value in [%,4] and
[0,27). The PatchPose-B contains the same number of patches as the PatchPose-A, which
are randomly transformed by A, A, € R. Finally, we make the PatchPose dataset to merge
PatchPose-A and -B, which dataset split is train: val: test = 3,947,054 : 40,276 : 40,278.
Dataset pruning. Among the generated image patches, there are ambiguous patches that
do not have distinct patterns for characteristic scale and orientation. We find that those
ambiguous samples often distract the learning process.

In order to prune the scale- and rotation-
agnostic examples, we adopt an instance -
discrimination scheme inspired by [5]. We
measure the average standard deviation o
of the transformed feature vectors g(-) €
RN:

1 —

g( I) — Z g (7; Y ( I)) ) Low discriminability High discriminability

Ry s
Acquired H =7 R

Pruned

@)
where A is a set of all possible pairs us-
ing 13 scaling and 36 rotating, i.e., A =
{(si,0:)}{%% and I is the transformed input
patches. g is a function that forwards to
CNN to generate features from the input
image. g(-) denotes the mean feature vector
from the set of transformed feature vectors.

The standard deviation ¢ means how
the sample can be discriminated by scale
and rotation. For feature extraction of prun-
ing, we use a ResNet-18 [6] model pre-
trained on ImageNet [3] to extract features before the last fully connected layer. We aim to
filter the unrelated samples with scale/orientation variation (e.g., textureless, round shape), to
focus on learning with clear examples. Finally, we prune 20% of patches with low discrim-
inability. Figure 2 illustrates the discriminability of feature vectors and several examples of
acquired and pruned patches. Most of the pruned patches are less discriminative about scale
and rotation compared to the acquired patches.

Figure 2: Illustration of the instance discrim-
ination scheme. The left side of the top il-
lustrates an example of a pattern-less patch
with low discriminability. The source vectors
of transformed patches have fewer separations
from their mean vector g. The right side of the
top illustrates a patch with high discriminabil-
ity. The source vectors are sufficiently sepa-
rated from the mean vector g.

2 Additional analysis on image matching

We experiment with our scale and orientation estimation on image matching methods for
in-depth analysis. We use the HPatches [1] benchmark, and the evaluation scheme is the
same as Section 4.2 and 4.4 in the main paper. We add more baselines [2, 7, 11, 12, 13] and
evaluate additional thresholds and report separated results of the illumination and viewpoint
variations. To evaluate the effect of our method, we replace the scale and orientation values
in the image matching pipelines [2, 7, 11, 12, 13] at the patch extraction stage. We use all
the pre-trained models and source codes released by the authors.
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Table | summarizes the results on the HPatches dataset. For keypoint detectors, we use
SIFT [7] and Key.Net [2]; we use HardNet [11] for descriptor extraction. Additionally, we
use detection-then-description image matching methods LF-Net [12] and RF-Net [13]. In
addition to Figure 4 in the main paper, we report the lower/upper bounds of patch extraction.
Column ‘Det.” denotes the keypoints detection methods, and ‘Des.” denotes descriptor ex-
traction methods, and ‘Pose.” denotes patch extraction methods. The row with ‘ours’ denotes
the results with argmax selection. The row with ‘ours (top-k)’ denotes top-k candidates se-
lection on our output histogram as scale and orientation values. To measure the lower bound,
we use identity matrix to extract patches centered on the keypoints as denoted the row with
‘lower’. To measure the upper bound, we use the ground-truth homography matrix to extract
patches centered on the keypoints as denoted the row with ‘upper’.

Our model consistently performs better than the baseline methods on the mean match-

ing accuracy (MMA) of the overall sequences and the viewpoint variation sequences. In
the illumination variations, RF-Net [13] and Key.Net+HardNet [2, 11] show robust results
on several thresholds. This is because RF-Net [13] trains their model using the HPatches
dataset, and Key.Net [2] uses synthetic training data to consider photometric variations. In
the viewpoint variations, our model consistently performs better than the existing methods
in the same settings that all the methods are trained to consider the geometric variations at
training time.
Upper bound and lower bound. Row ’lower’ and "upper’ denote the lower bound and
upper bound accuracies of patch extraction on the image matching pipeline. We measure the
lower bound using no pose extraction at all, i.e., patch sampling by an identity matrix, and
the upper bound using ground-truth pose values to evaluate the test oracle of patch extraction
on image matching pipelines. The results imply that there is still room for improvement as
the upper bound (i.e. using ground-truth pose values for pose extraction) yields the best
results, motivating further research in this aspect.

3 Analysis on prediction ranges.

A plot of prediction range. Figure 3 plots the predicted scale and orientation of different
models on the PatchPose dataset, where we can observe the ranges of predicted scale and
orientation. We obtain the scale value of SIFT [7] using the scale-space maxima and octave
index, where a single octave-level difference is the same to enlarge twice the image size.
We obtain the orientation value of SIFT [7] using the dominant direction of the histogram
bin. We use the scale and orientation values from the output of LF-Net [12] and RF-Net [13]
keypoints detector. In the case of our model, we convert histogram bins to the corresponding
scale and orientation values by argmax selection. All the scale values are plotted in log,
scale. SIFT [7] and our model show a large range in both scale prediction and orientation
prediction. In contrast, LF-Net [12] is limited to a small range in scale prediction, and RF-
Net [13] is to a small range in both scale prediction and orientation predictions.

Evaluation of scale/orientation estimation under varying differences. Figure 4 shows
the accuracy of patch pose estimation under varying differences in scale or orientation.
Among the baselines, SIFT [7] makes relatively accurate predictions across various ranges
of scale/orientation differences. On the other hand, the existing learning-based methods [12,
13] exhibits high accuracy only in specific ranges of scale/orientation differences. As can
be in Figure 3, this problem occurs due to the limited prediction range. This indicates that
these models [12, 13] have limited power in predicting large changes in scale/orientation.
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methods MMA. . -

K M Overall Illumination | Viewpoint

Det. Des. Pose. 3px  6px | 3px 6px | 3px 6px
Tower 355 | 449 461 | 499 51.0 | 40.1 413

SIFT 352 | 417 446 | 458 489 | 377 404

ours 1229 || 363 | 513 543 | 538 572|489 515

ours (top-4) 36.7 | 544 577 | 57.3 61.1 | 51.7 545

, upper 383 | 655 692 | 60.7 646 | 702 737

SIFT[7] | HardNet [11] Tower 1513 | 478 49.1 | 530 545 | 427 438
SIFT 1489 | 452 490 | 50.1 545 | 405 4338

ours 487.6 || 154.6 | 575 614 | 602 647 | 549 58.1

ours (top-4) 157.6 | 61.1 65.1 | 642 69.0 | 58.0 61.3

upper 166.0 | 725 770 | 677 726 | 77.1 81.1

Tower 452 | 279 285 | 371 378 | 19.0 196

LE-Net 442 | 222 226|297 302|149 153

ours 1280 || 426 | 356 366 | 421 43.1 | 294 302

ours (top-4) 443 | 444 456 | 51.6 528 | 374 386

upper 46.1 | 609 630 | 60.1 62.1 | 61.7 63.8

LE-Net[12] | LF-Net[12] Tower 1644 [ 270 279 [ 357 367 | 186 193
LF-Net 1603 | 21.0 217 | 282 29.1 | 140 146

ours 512.0 || 155.0 | 37.1 38.8 | 43.6 455 | 307 323

ours (top-4) 168.5 | 46.6 48.7 | 540 56.2 | 394 414

upper 184.6 | 664 69.6 | 644 674 | 683 717

lower 597 | 277 295 | 380 399 | 179 195

RE-Net 704 | 355 451 | 526 643 | 19.1 265

ours 1276 || 665 | 41.6 50.6 | 499 57.3 | 33.6 44.1

ours (top-4) 667 | 450 557 | 53.5 625 | 367 492

upper 652 | 489 61.1 | 552 649 | 429 575

RE-Net [13] | RF-Net[13] Tower 2072 [ 279 293 | 388 403 | 174 186
RE-Net 2355 | 37.6 478 | 568 683 | 19.1 28.1

ours 5104 || 2267 | 457 549 | 542 612 | 37.5 488

ours (top-4) 2309 | 49.6 60.0 | 583 66.1 | 41.2 54.1

upper 2251|553 670 | 605 69.0 | 504 65.1

Tower 465 | 557 571 | 628 640 | 488 503

Key.Net 589 | 70.6 743 | 73.6 773 | 676 714

ours 1255 || 55.6 | 662 69.5 | 689 72.0 | 63.7 67.0

ours (top-9) 589 | 711 749 | 732 768 | 69.0 73.1

upper 476 | 756 783 | 723 749 | 787 815

KeyNet [2] | HardNet [11] Tower 1770 | 547 561 | 60.7 620 | 489 50.3
Key.Net 2415 | 73.0 779 | 745 800 | 715 759

ours 5039 || 2215 | 686 72.8 | 69.4 738 | 679 718

ours (top-9) 2407 | 733 782 | 740 792 | 727 772

upper 1872 | 784 817 | 742 774 | 825 858

Table 1: Additional results with off-the-shelf keypoints detectors and descriptors on the
HPatches. Column ‘K’ denotes the number of extracted keypoints, and ‘M’ denotes the
average number of predicted matches. Row with ‘ours’ means argmax selection, and row
with ‘ours (top-k)’ is k multiple candidates extraction on our histogram representation. Row
with ‘lower’ means lower bound accuracy with no patch alignment, identity patch sampling.
Row with ‘upper’ means upper bound accuracy with patch extraction using ground-truth
homography matrix.

In contrast, our model makes more diverse and more accurate predictions than the other
methods.
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Figure 3: Plot of scale and orientation predictions on the PatchPose dataset. The objective
of this experiment is to show the limitation of the range of scale and orientation predicted by
each model. SIFT [7] and our model have a large range in scale and orientation prediction,
but LF-Net [12] has a restricted range in scale prediction, and RF-Net [13] has a small range
in scale and orientation prediction.

4 More qualitative results

We visualize the scale and orientation estimation on example cases with large pose differ-
ences in Figure 5. Each model is tested on the local image patches centered on the cir-
cles shown. Compared to the other methods, our method predicts the scale and orientation
of the local region more accurately. In these challenging cases with extreme differences,
the previous learning-based methods, LF-Net [12] and RF-Net [13], fail to estimate large
scale/orientation changes accurately, which are rarely observed in their training. The hand-
crafted method, SIFT [7], performs relatively better than the learning-based methods.
Figure 5 shows qualitative examples by different ranges. We use two more rotation an-
gles for the experiment: 51—’8:, 7@” and 1%”. We first rotate each image using the target angle,
then enlarge the image to be 2.52 times the original size. Then, we search for the correspond-
ing locations of sampled points in the transformed image to predict the characteristic scale
and orientation of corresponding locations using each method [7, 12, 13]. We compare the

predicted pose differences with the ground truth pose differences and visualize them with
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Figure 4: Range-wise evaluation of scale estimation (upper) and orientation estimation (be-
low) on the PatchPose dataset. We evaluate the accuracy of scale and orientation estimation
by each difference level. We set the accuracy threshold +21/3 and +10°, scale and orienta-
tion, respectively. The value of the last index ‘total’ indicates the average of the accuracy.

colored circles and lines. These examples show that the previous learning-based methods
tend to learn a bias in their training setup, and thus often do not generalize well to different
unseen cases. In contrast, due to self-supervised and explicit learning, our method performs
very robustly to such a wide range of variations.

Figure 6 shows qualitative examples on zoom/rotated image pair [8, 9]. Compared to
the existing models [7, 12, 13], our model shows better patch alignment results based on the
predicted scale/orientation values.

Figure 7 visualizes examples of image matching on the HPatches dataset [1]. Our model
generates more matches with better precision on the examples.

Figures 8 and 9 show example sequences of the PatchPose-A and the PatchPose-B. All
the visualized patches are cropped by 64 x 64 size from the original images. PatchPose-
A has grid-level scale/orientation variations, while the PatchPose-B has randomly selected,
continuous scale/orientation variations.
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Figure 5: Visualization of scale and orientation prediction error using [7, 12, 13] and ours.
For each image, we generate an image pair using 2.52 times upscale and 50° rotation (Row
1, 2), 140° rotation (Row 3, 4), and 320° rotation (Row 5, 6). We apply each method to the
pair and estimate the difference of scale and orientation for corresponding regions. The line
direction denotes the orientation error, i.e., pointing upwards shows 100% accuracy while
pointing downward shows 0% accuracy. For enhanced visibility, we add colors to the circles,
as the error distribution at the top of the color bar. The redder the color, the less accurate the
orientation predictions are; the bluer the color, the more accurate. The circle size represents
the scale prediction error, where the larger circle size denotes the larger prediction error.
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Image [ Image I’

(a) Image I (b) Image I’ (d) SIFT (e) LF-Net (f) RF-Net

Figure 6: Selected visualization of patch pose estimation on zoom/rotated image pair [8, 9].
The colors denote the corresponding patches on image I and I’. Columns (a) and (b) show
the cropped patches from the input image I and I’. Columns (c), (d), (¢), and (f) show the
aligned patches from I to I’ using the predicted scale/orientation values of each model. In this
dataset, the ground-truth homography has not only scale and orientation factors but also other
perspective transformation parameters (e.g., shearing, tilting). Therefore, the patches may
not be perfectly aligned from I to I’ by only using scale and orientation factors. Nevertheless,
our model consistently aligns several patches better than the other models.
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Figure 7: Visualization of image matching using patch extraction on the HPatches [1]. The
circles are keypoints detected by each method, and the lines denote predicted matches to
satisfy mutual nearest neighbour. The color denotes correctness by ground-truth homogra-
phy, i.e., green color is a correct, red color is an incorrect match. We set the threshold of
correctness as 10 pixels. The left side image pairs denote image matching results using the
internal pose estimator of each method. The right side image pairs denote image matching
results to replace the pose estimation results with our pose estimation results.
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Figure 8: Visualization of scale variation examples of the PatchPose-A (row 1, 2) and the
PatchPose-B (row 3, 4). From left to right, the columns show the resized patches which are
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scaled at factors from 22 to 22 at an interval of 23 about rows 1 and 2. The patches of rows
3 and 4 unlock the interval restriction and randomly resized on the range of factors [272, 22].
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Figure 9: Visualization of orientation variation examples of the PatchPose-A (the top two 6x6
grids) and the PatchPose-B (the bottom two 6x6 grids). The top two grids show the rotated
patches of PatchPose-A, at a rotation increasing anticlockwise from top left to bottom right at
a ﬁ 7 interval. The bottom two blocks show the rotated patches of PatchPose-B, at randomly
generated rotation factors 0 <A, < 27,A, € R. We sort the sequences in an increasing order
of degrees.
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