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1 Additional Experiments
In Table 1, we give an extended version of Table 1 of the main paper.1 We added one new
column for our method, namely column 7: ours(all boxes). Now there are four different
versions of our method. First we remind what the ’old’ columns are. The column ours is
training with the regularized loss in [11], column ours(T) is training with our version of
regularized loss, with the tight box prior, column ours(T+N) adds all the other classes as
negative samples. Finally, we test how our method performs if instead on training on ‘clean’
boxes, we use all boxes in the training dataset. In particular, we take all boxes even if they
are small and overlap with other boxes. For consistency, we test only on clean boxes, since
the method in all other columns were tested on clean boxes only. The results of training on
all boxes and testing on clean boxes is in the new column ours(all boxes). Note that this
column is obtained with our loss function, namely the tight bounding box loss. For all four
of our methods, we kept the smin = 0.3 in the minimum volume loss.

Surprisingly, training on all boxes is not much worse than than training on clean boxes.
The chair fares the worst by far, probably due to high confusion with the table class. Inter-
estingly, training on all boxes gives a significantly improved performance over all other of
our methods for the table class. This is most likely due to the dataset size. Class table has
only 65 clean bounding boxes, and this is a very small dataset to learn the appearance from.
There are 715 training boxes overall, if we do not remove overlapping boxes, thus training
on all boxes for the table is advantageous, even if they have overlap with other classes. In
principle, we could decide to include ’not clean’ boxes in our dataset if the number of clean
boxes for the class is small.

We now provide some implementation details for the results in Table 1 that we omitted
from the main paper due to the lack of space. For implementing MCG, we follow the prior
work [2, 5], and select the proposal that has the highest IoU measure with the bounding
box. We do not use MCG ranking of proposals, since the ranking was trained with pixel-
precise supervision on Pascal VOC dataset. For implementing denseCRF [3] we use the
same approach as in [6]. We select α% of pixels in the center of the box and label them
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1The main paper had a shorter version due to the lack of space.
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class #boxes MCG denseCRF grabcut salient ours (all boxes) ours ours(T) ours(T+N)
aero 608 63.72 70.97 67.12 88.43 84.95 87.13 88.88 89.12
bike 243 58.41 69.56 69.60 80.00 84.40 84.37 85.59 85.74
bird 827 67.32 76.54 70.69 90.07 87.69 91.16 91.57 91.70
boat 444 65.73 76.68 76.58 77.57 82.89 84.91 87.26 87.14
bottle 376 78.61 85.19 84.97 82.50 91.52 89.28 92.45 92.68
bus 310 76.75 89.32 87.04 92.71 94.17 91.44 94.73 94.60
car 909 72.07 86.27 81.99 88.00 88.88 89.23 92.54 92.90
cat 901 73.86 86.49 80.44 84.62 92.55 92.69 94.71 94.73
chair 1003 58.73 69.41 63.48 68.28 68.72 74.71 75.99 78.64
cow 428 72.54 84.99 75.01 87.17 87.70 91.42 92.56 92.53
table 65 62.45 83.63 82.22 63.32 85.26 75.26 79.59 79.69
dog 953 72.58 85.95 79.40 89.25 92.68 93.98 94.36 94.42
horse 359 66.57 79.22 71.00 88.22 88.22 90.26 91.35 91.53
mbike 248 59.30 80.60 75.92 85.48 88.87 87.95 89.61 89.61
person 4029 70.02 80.01 78.29 84.60 80.56 85.83 88.02 89.05
plant 437 63.13 81.24 76.10 74.62 86.43 82.59 87.51 87.69
sheep 548 73.95 84.66 76.78 85.22 87.19 88.67 91.42 91.68
sofa 256 70.07 78.13 73.04 66.04 79.10 78.79 81.59 81.99
train 445 68.64 83.94 78.91 85.89 89.33 87.86 92.05 92.08
tv 455 82.09 86.96 85.00 83.52 90.16 88.18 92.20 92.36
mean Fβ 68.83 81.00 76.68 82.28 86.56 86.79 89.20 89.50

Table 1: Comparison of object/background segmentation accuracy on training bounding
boxes from Pascal VOC 2012 dataset using MCG [6], denseCRF [3] GrabCut [8], salient
object detection [7] and four versions of our method. See text for explanation of four differ-
ent versions of our method. Performance metric is Fβ score (higher is better).

as preferring the object with probability p. Then we select a border of pixels outside the
box to be set to the background. All other pixels are set to an unknown label. Then the
unary CRF terms are set as suggested in the standard implementation package2. We chose
the appropriate setting of α, p and denseCRF parameters on a small held-out set of training
images (100 images, fully annotated).

Now we compare the performance on the final task, semantic segmentation, if we use
the loss function in [11] instead of our loss function. In particular, we test the performance
we get when constructing pseudo ground truth from boxes in column 8 of Table 2 instead of
column 10. We use the overlap-void method for constructing the ground truth as described
in Sec. 4.3 of the main paper and train deepLab [1] with cross-entropy for 200 epoch, with
the same parameters before. The resulting mIoU is only 71.22, compared to 77.1 using our
modified regularized loss (based on column 8 in Table 2). Such a large gap in performance
is due to the accuracy of the pseudo-ground truth. We computed mIoU of pseudo ground
truth using the results of the loss function in [11], and it is only 73.4. With our modified
regularized loss, mIoU = 79.1. The percentage of void pixels in both cases is approximately
3.

Next we compare different training regimes for overlap-back-void approach, where pix-
els segmented as background inside any box get labeled as void, to minimize the number
of object pixels that are mistakenly labeled as background. Since many pixels are labeled
as void (23.53%), training benefits from including denseCRF loss from [10], in addition to
the cross entropy loss. The method in [10] was specifically designed for training with the
scribble form of weak supervision, so that a large portion of image pixels are labeled as void.

2https://github.com/lucasb-eyer/pydensecrf
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GCMCG(CRF) [5] 93.3 85.0 35.9 88.6 70.3 77.9 91.9 83.6 90.5 39.2 84.5 59.4 86.5 82.4 81.5 84.3 57.0 85.9 55.8 85.8 70.4 75.7
Box2Seg [4] 92.5 66.5 31.7 78.9 65.5 83.4 90.4 86.7 86.0 55.1 81.8 59.9 80.5 74.1 76.0 75.7 65.3 85.1 72.5 87.8 77.7 74.9
Box2Seg (CRF) [4] 93.3 72.4 33.0 84.2 64.9 83.5 90.9 86.7 88.7 57.2 83.6 62.5 82.6 76.8 77.0 77.8 63.3 87.2 75.1 88.3 74.1 76.4
Ours (overlap-back-void) 92.0 81.3 36.5 86.9 73.1 79.5 90.5 85.9 88.6 41.7 86.3 63.6 85.9 83.4 81.3 81.3 62.9 81.3 48.2 83.2 77.3 75.7
Ours (overlap-void) 93.1 87.8 42.1 89.3 70.9 78.0 88.6 88.0 90.4 42.1 89.4 54.6 87.9 86.0 82.6 82.6 66.1 88.7 51.7 85.9 73.4 77.1

Table 2: Per-class results on Pascal VOC 2012 validation set of our methods and prior meth-
ods that made per-class results available.

method backbone mIoU-Semi mIoU-Val FullS
BCM (CRF) [9] Resnet-101 71.6 74.5

Box2Seg (CRF)[4] Resnet-101 >83.1 75.1
Ours (overap-void) Resnet-101 79.8 77.8

Table 3: Semi-supervised Pascal VOC validation set results.

Adding denseCRF loss encourages a pixel with a void label to be assigned to the same label
as a pixel that is similar in color and does have a ground truth label. We use the same param-
eter setting as in [10]. They also observe that training with just cross entropy first and then
adding denseCRF loss works better. This approach also works the best for us. Training with
cross-entropy alone, we get mIoU = 71.87. Adding denseCRF loss to cross entropy from
the beginning gets mIoU = 74.99. Adding denseCRF loss after training with cross entropy
first gives the best result, mIoU = 75.71. For our overlap-void approach, where pixels in
the bounding boxes that are classified as background get labeled as background, there is no
benefit in adding denseCRF loss. There are only 3.07% of pixels that are labeled as void in
this case.

We also evaluated our approach in semi-supervised setting. Starting with our trained
classifier in the overlap-void setting, we fine-tune it using pixel-precise ground truth on
1,464 Pascal VOC training images, which is about 13% of all available training images.
We train for 30 epoch using a fixed learning rate of 0.001. Table 3 summarizes our results
and compares them with semi-supervised results in [9] and [4]. The last column is the
result of training with full ground truth, for comparison. Note that [4] report the results
of semi-supervised training with 10% and 100% of training data, therefore we report their
performance for 10% of training data with pixel precise ground truth, and sign ‘>’ denotes
that with 13%, their performance would be better. Note that our result in semi-supervised
setting is better than training with full ground truth. The results in [9] in semi-supervised
setting are worse than training with full ground truth. The results in [4] are strikingly better
than that of training with full ground truth. However, in [4] they do not provide any details
of their supervised training (number of epochs, learning rate schedule, etc), no provide any
discussion of why their training in semi-supervised setting is so much better than training
with full ground truth.

Per-class result comparison with prior work that made per-class results available are in
Table 2.

2 Qualitative Comparison
We first show qualitative comparison of the bounding box segmentations obtained by our
approach vs. that of GrabCut and salient object detection, see Fig. 1. GrabCut tends to join
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Figure 1: Examples of object/background segmentations for our method, salient object de-
tection, and GrabCut.

pieces of the background to the object, likely due to a poor model of object appearance con-
structed only from one box. Salient object detection is trained on a large dataset. However, it
is trained for salient object detection, and, therefore, it tends to focus on more salient object
parts, such as the skin of the person or the middle part of the train. Our method learns ob-
ject appearance (with weak tag supervision) for each class from a large set of class-specific
samples, and therefore is able to learn a class-specific appearance model that leads to a more
accurate segmentation.

We now compare our results qualitatively to the most recent prior work [4, 9]. In
Fig. 2, we show segmentations on the images chosen by [9]. Our results are without any
post-processing. We capture sheep legs (top row) and horse legs (middle row) better than
prior work. In the last row, we have small scale human figures captured (to the right of
the two main figures), while the other methods most likely smooth them out due to CRF
post-processing.

In Figure 3 we show some example segmentations of our approach (overlap-void) on the
test data.
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Figure 2: Comparison of our results for overlap-void (last column) to BCM [9] and Box2Seg
[4] on Pascal VOC 2012, validation set. BCM and Box2Seg are with denseCRF post-
processing. Our results are without post-processing.

Figure 3: Examples of our segmentations for overlap-void on Pascal VOC 2012 test set.
Each image pair shows the input image and our segmentation.
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