
MAO, YU, YAMAKATA, AIZAWA: NOISY ANNOTATION REFINEMENT 1

Supplementary Material: Noisy Annotation
Refinement for Object Detection

Jiafeng Mao
mao@hal.t.u-tokyo.ac.jp

Qing Yu
yu@hal.t.u-tokyo.ac.jp

Yoko Yamakata
yamakata@hal.t.u-tokyo.ac.jp

Kiyoharu Aizawa
aizawa@hal.t.u-tokyo.ac.jp

The University of Tokyo
Tokyo, Japan

1 Definition of noise

1.1 Symmetry Label Noise

The definition of transition matrix Q of symmetric noise is as follow,

Q=


1− r r

n−1 · · · r
n−1

r
n−1

r
n−1 1− r r

n−1 · · · r
n−1

...
. . .

...
r

n−1 · · · r
n−1 1− r r

n−1
r

n−1
r

n−1 · · · r
n−1 1− r

 (1)

where r is the noise rate and n is number of the class.

1.2 Pair Label Noise

The definition of transition matrix Q of pair noise is as follow,

Q=


1− r r 0 · · · 0

0 1− r r · · · 0
...

.
...

0 · · · 1− r r
r 0 · · · 0 1− r

 (2)

where r is the noise rate.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 MAO, YU, YAMAKATA, AIZAWA: NOISY ANNOTATION REFINEMENT

1.3 Uniform Localization Noise

If the original bounding boxes are presented as [x1,y1,x2,y2], the noisy bounding boxes
[x′1,y

′
1,x
′
2,y
′
2] can be formulated as follows:

x′1 = x1 +δ1(x2− x1),

x′2 = x2 +δ2(x2− x1),

y′1 = y1 +δ3(y2− y1),

y′2 = y2 +δ4(y2− y1),

(3)

where δi ∼U(−NBBox,NBBox).

1.4 Gaussian Localization Noise

We use the same way as above to create the Gaussian noise dataset. The difference is that
the δi ∼ N(0,σ2) of Gaussian noise datasets follow the Gaussian distribution.

2 Implementation Details

Although our explanation about the proposal assumes that there is only one object in each
image and the training batch size is 1, our experiments train the Faster R-CNN with batch
size as 2. In practice, we apply the process we described in Section 3 to each image and each
object. During the pre-forward stage, each annotated object will generate one corresponding
classification loss. We record the value of the loss and then judge their correctness and refine
them separately, as shown in Algorithm. 1.

3 Analysis on Hyper-parameters

There are three hyperparameters need to be determined for our proposal. They are the weight
α for the initial bounding box correction in Eq. (19), length N for queue Q, and the accep-
tance rate r for CINJ.

The acceptance rate r should be close to the percentage of correct class labels in the
training dataset, which can be estimated by using a small amount of training sample. How-
ever, when the dataset is extremely noisy and the dataset is unbalance, setting an acceptance
rate close to the percentage of correct class labels may prevent the detector from learning
hard classes. In such case, slightly increase the acceptance rate can allow the detectors to
learn from hard classes. In our experiments, the acceptance rate r for datasets with Nlabel as
20%,40% and 60% are set as 80%,60% and 50%.

The quantitatively sensitive analysis on N is shown on Table. 1. The performance of our
proposal is not sensitive to N, all of experiments with N larger than 128 achieve relatively
close results. α is the only tunable parameter of our proposal. The quantitatively sensitive
Analysis on α is shown on Table. 2. Tuning α from 0.2 to 0.4 can achieve an optimal
performance, and all setting of α from 0.1 to 0.5 significantly outperform the baseline.

MAO, YU, YAMAKATA, AIZAWA: NOISY ANNOTATION REFINEMENT 3

Algorithm 1: Overall Architecture

1 Input: Image X , noisy annotation {Y,B}.;
2 Q← {∞}N ;
3 while not MaxIters do
4 for x ∈ Batch do
5 Image x with annotation Y = {yi},B = {bi};
6 Generate proposals P by RPN(x);
7 for {y,b} ∈ {Y,B} do
8 b∗,Pb← Center-Matching(b,P);
9 for bi ∈ {b∗}∪Pb do

10 Calculate score p(x,bi) by Pre-Forward;
11 br

i ← Regress(bi) by Pre-Forward;
12 Br← Br ∪{br

i};
13 end
14 Calculate b∗m by Eq. (14);
15 Calculate classification loss L(b∗,y);
16 clean(y)← CINJ(L(b∗),Q);
17 if clean(y) then
18 Y ∗← Y ∗∪{y},B∗← B∗∪{b∗m};
19 else
20 Pseudo-label y∗← argmaxc p(c|x,b∗);
21 if p(y∗|x,b∗)> ∑c 6=y∗ p(c|x,b∗) then
22 Y ∗← Y ∗∪{y∗},B∗← B∗∪{b∗m};
23 end
24 end
25 Q←Q+{L(b∗)};
26 Q←Q−Q0;
27 end
28 Train model with updated annotation {Y ∗,B∗};
29 end
30 end

4 Analysis on Thresholds
There are 2 thresholds need to be determined for our proposal. They are the threshold TCM
of matching region proposals to annotated bounding boxes in Eq.(18), and the label refine-
ment threshold Tre f ine in Eq.(13). The quantitatively sensitive analysis on TCM and Tre f ine
are shown on Table. 3 and Table. 4, respectively. The performance of our proposal is not
sensitive to both of these two thresholds, all of the experiments achieve relatively close re-
sults.

5 Evaluation on Refined Datasets
Our proposal alternately update the noisy annotation and the parameters of the detector. To
prove the effectiveness of our noisy annotation refinement, we record the refined annotations
in last training epoch and evaluate them by clean annotations. Table. 5 shows the results of

4 MAO, YU, YAMAKATA, AIZAWA: NOISY ANNOTATION REFINEMENT

NLabel
N Baseline64 128 258 512

20% 79.6 777999...999 79.7 79.8 75.2
40% 78.8 79.3 777999...666 79.3 71.3
60% 76.3 777666...666 76.3 76.4 66.8

Table 1: mAP of Faster R-CNN trained on datasets with classification label noise by different
N.

NBBox
α Baseline0.1 0.2 0.3 0.4 0.5

20% 78.0 777888...444 77.9 77.4 77.8 75.6
40% 72.3 73.2 777333...444 73.1 72.8 58.9

Table 2: mAP of Faster R-CNN trained on datasets with localization annotation noise by
different α .

NLabel
TCM Baseline0.8 0.85 0.9 0.95

20% 79.6 777999...999 79.7 79.8 75.2
40% 78.8 79.3 777999...666 79.3 71.3
60% 76.3 777666...666 76.3 76.4 66.8

Table 3: mAP of Faster R-CNN trained on datasets with classification label noise by different
TCM .

NBBox
Tre f ine Baseline0.4 0.5 0.6 0.7

20% 78.0 777888...444 77.9 77.8 75.6
40% 72.3 73.2 777333...444 72.8 58.9

Table 4: mAP of Faster R-CNN trained on datasets with localization annotation noise by
different Tre f ine.

MAO, YU, YAMAKATA, AIZAWA: NOISY ANNOTATION REFINEMENT 5

NBBox 20% 40%
NLabel 0% 20% 40% 60% 0% 20% 40% 60%
CorLocnoisy 54.67 44.93 45.10 45.52 9.02 8.66 8.73 8.79
CorLoccm 57.35 57.23 56.97 57.62 15.44 15.39 15.15 15.38
CorLoc f inal 777777...222111 777555...555444 777444...666888 777333...888666 333888...000888 333777...666888 333444...111333 333444...111777

Table 5: Correct localization rate(%) of refined noisy annotations.
NBBox 0% 20% 40%
NLabel 20% 40% 60% 20% 40% 60% 20% 40% 60%
TP 93.56 95.68 83.27 92.72 95.63 83.05 91.03 94.55 82.11
TN 97.07 94.44 98.6 96.79 94.77 98.23 96.65 93.94 97.06
FP 2.93 5.56 1.40 3.21 5.23 1.77 3.35 6.06 2.94
FN 6.44 4.32 16.73 7.28 4.37 16.95 8.97 5.45 17.89
N∗Label 333...444888 666...333111 111333...999777 444...222333 666...444999 111333...888111 555...333666 888...444555 111666...222111

Table 6: Accuracy(%) of the class label noise refinement. T P denotes the percentage of
noisy labels detected to be noisy, and T N denotes the percentage of clean labels judged to be
clean. FP and FN denote the percentage of clean labels judged to be noisy and noisy labels
judged to be clean, respectively. N∗Label denotes the noise rate of classification labels after the
judgment and refinement.

the localization annotation refinement. We compare the refined localization annotation with
clean dataset. When a refined bounding box has an IOU with any bounding box in clean
annotation larger than 0.7, it is considered as correct localization. The first row shows Corloc
of the noisy annotation, second row and last row show the CorLoc after center-matching and
final correction, respectively. Table. 6 shows the results of the classification label judgment
and refinement. Although severe localization annotation noise and the classification label
noise are entangled together, our proposal can still significantly reduce the class label noise
rate.

6 Loss Distribution of Pair Label Noise
Although the pair noise is much more challenging than symmetry label noise, the training
losses for noisy and clean annotations are still clearly separated, as shown in Fig. 1. This
fact ensure the effectiveness of our method on more challenging noise models such as pair
noise.

NPair = 20% NPair = 30% NPair = 40%

Figure 1: Distribution of the classification loss of datasets with pair noise.

