
PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS 1

Unsupervised Discovery of Actions in
Instructional Videos – Supplemental material

AJ Piergiovanni1

ajpiergi@google.com

Anelia Angelova1

anelia@google.com

Michael S. Ryoo2

mryoo@google.com

Irfan Essa1

1 Google Research
2 Robotics at Google

1 Supplemental experimental results
Figure 1 visualizes the segmentations inferred by our approach when the number of actions
varies from 5 to 11 for the tire changing activity of the NIV dataset. As seen, even when
the number of actions is unknown, the algorithm provides meaningful segmentations, for
example, by splitting larger actions in two. The boundaries of the automatically segmented
actions seem to be consistent with the boundaries of the ground truth actions, as well.

In Table 1, we report the quantitative results corresponding to Figure 7 in the main paper,
for future reference. The experiment is done by varying the number of actions to segment
the video into and is for the NIV dataset. We find that the model is not overly-sensitive to
this hyper-parameter, and that the results are improved, the closer the number of actions is
to the ground truth number of actions. Thus, measuring the performance on a validation set
will be a good proxy for selecting the best number of actions per dataset.

Figure 2 shows the confusion matrix for the 50 Salads dataset. As seen, actions are well
separated from one another. There is confusion among objects (top left portion), e.g., ‘cut

c© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Get things
out Start Loose Jack Up Unscrew Put On Tighten WheelJack

DownScrew Wheel

1 2 3 4 5 86 7

1 2 3 4 5

1 2 3 4 5 6 7

1 2 3 4 5 86 7 9

1 2 3 4 5 86 7 9 10 11

Figure 1: Example segmentation of the change tire activity varying the number of actions
from 5 to 11. The segmentations generally match, even when the number of actions does not
match the ground truth number.

2 PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS

Steps Change Tire (11) CPR (7) Repot Plant (7) Make Coffee (10) Jump Car (12)

GT Steps 0.60 0.52 0.32 0.37 0.29
5 0.45 0.48 0.25 0.25 0.12
7 0.48 0.52 0.32 0.30 0.18
9 0.54 0.52 0.32 0.35 0.22
11 0.60 0.50 0.30 0.34 0.27
13 0.58 0.48 0.28 0.35 0.26

Table 1: Varying the number of steps used in the model. The number in parenthesis indicates
the ground-truth number of steps for each activity. NIV Dataset.

Oracle Accuracy %
None 33.4
Action 39.8
High-level action 34.8
Temporal 36.8
Ordering 39.4
Object 48.5

Table 2: Comparison of different oracles on 50-salads

cucumber’, ‘cut tomato’ and ‘cut lettuce’ are confused, but actions, e.g., ‘cut’ and ‘peel’ are
well separated. This confirms actions are well understood by the model.

1.1 Ablation experiments using oracles

To better understand where the model succeeds and fails, we compare effects of adding
different oracle information.

First, we compare our model using 5 different oracles. (1) Object oracle that tells us the
object of interest for each frame. For example, if cutting cucumber is the action, cucumber
is the given object; for frying an egg, egg is given. (2) Action oracle (e.g., cut, peel, mix,
etc.). (3) High-level action oracle, i.e., a grouping of several relation actions. For example:
‘prepare salad’ which contains cut, peel, add to bowl actions. (4) Time oracle which gives
the start and end times of each action, but not the action itself. (5) Order oracle: gives the
previous and next action, but not the current action (only usable for classifying the current
frame).

The results are shown in Table 2 for the 50-salads dataset. We find that the model per-
forms quite well in learning the temporal ordering and structure of the data, as the per-
formance only slightly increases when including additional temporal information. Adding
perfect object information greatly boosts performance, suggesting that the current model
struggles to learn objects.

Furthermore, we use a Few-Shot Labeling Oracle to understand the performance of the

labeled 0 1 2 3 4 5 50
Acc. % 33.4 42.8 44.3 45.2 46.6 47.1 77.6

Table 3: Classification accuracy for different number of labeled examples (50 labels means
all examples are labeled). 50-salads.

PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS 3

pe
el
 c
uc

um
be

r

cu
t c

uc
um

be
r

cu
cu

m
be

r t
o

bo
wl

cu
t t

om
at

o

to
m

at
o

to
 b

ow
l

cu
t c

he
es

e

ch
ee

se
 to

 b
ow

l

cu
t l

et
tu

ce

le
ttu

ce
 to

 b
ow

l
m

ix

ad
d

oi
l

ad
d

vi
ne

ga
r

ad
d

sa
lt

ad
d

pe
pp

er

m
ix
 d

re
ss

in
g

pu
t o

n
pl

at
e

ad
d

dr
es

sin
g

Predicted label

peel cucumber

cut cucumber

cucumber to bowl

cut tomato

tomato to bowl

cut cheese

cheese to bowl

cut lettuce

lettuce to bowl

mix

add oil

add vinegar

add salt

add pepper

mix dressing

put on plate

add dressing

T
ru

e
 l
a
b
e
l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Confusion matrix for the 50 salads dataset. Most of the confusion is around the
objects, e.g., ‘cut lettuce’ vs. ‘cut tomato’ and not with the activities themselves, e.g. ‘cut’
and ‘peel’ are not confused.

4 PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS

model. Here we have an oracle that gives N true examples and the model ‘mines’ the action
from the other videos. This allows further analysis of the impact of unsupervised learning.
We conduct a set of experiments comparing the unsupervised approach against N fully-
labeled videos given. N videos are selected at random for supervised learning. The we
perform the iterative, unsupervised training method for the remaining videos. The results
are averaged over 10 different runs, each with a different set of labeled videos. Table 3
shows the results. We find that adding one true video greatly boosts performance (+9%),
and each additional video adds only about 1% to fully supervised performance, showing the
strong benefit of the self-labeling approach.

2 Method details

2.1 Action length equation
As mentioned in the paper, one constraint can require that the average lengths are similar. So
we can compute the difference in length compared to the average action length. Computing
the average action length cost function can be done as (following the notation from the
paper):

C2(S) =

√
1
|O| ∑

a∈O

(
L(a,S)− 1

|O|
(∑i∈O L(i,S))

)2

, (1)

where L(a,S) computes the length (i.e., number of frames) labeled as action a in sequence
S. This function will be minimized when all actions occur for equal number of frames.

2.2 Cross-Video Matching details
We here detail the losses or constraints used when learning across videos. A cross-video
matching term is added to encourage the model to generalize from other videos, and is espe-
cially useful in videos which have the same actions but in partially ordered sequences (e.g.,
break egg, heat pan vs. heat pan, break egg).

Given a video segment the model labeled as an action fa from one video, a segment f̂a
the model labeled as the same action from a second video, and a segment fb the modeled
labeled as a different action from any video, we can measure the cross-video similarity using
standard methods, such as a triplet loss

LT (fa, f̂a, fb) = || fa− f̂a||2−|| fa− fb||2 +α, (2)

or a contrastive loss

LC(fa, f̂a, fb) =
1
2
|| fa− f̂a||2 +

1
2

max(0,α−|| fa− fb||2). (3)

These two functions capture similar properties but in slightly different ways. The triplet
loss maximizes the difference between anchor (e.g., fa) and positive (f̂a)/negative (fb) dis-
tance. While the contrastive loss maximizes the distance between fa and fb separately from
minimizing the distance between fa and f̂a. This results in slightly different cross-video
matching metrics.

PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS 5
Function Use NIV 50-Salads Brkfst

None N/A 0.420 33.4 31.7
triplet cost 0.485 37.8 37.8
contr. cost 0.478 37.9 36.4
triplet loss 0.492 38.4 37.5
contr. loss 0.478 39.2 38.4
triplet both 0.442 35.7 36.9
contr. both 0.448 36.2 35.2

Table 4: Cross video matching3

Method Lrn NIV 50-Salads Brkfst

Avg. no 0.420 33.4 31.7
Gaussian no 0.418 32.8 34.5
Poisson no 0.435 33.6 32.8
Gaussian yes 0.432 35.7 36.5
Poisson yes 0.447 37.9 37.9

Table 5: Different length models, including
learned and fixed lengths per action.1

As these functions are differentiable, we can directly add this to the loss function (Eq. 4
in the main paper) or to the cost function (e.g. as an additional cost term similat to C2 in Eq.
2 in the main paper). It can also be added to both. By adding this to the cost function, we are
ensuring that the chosen labeling of the videos is most consistent for feature representations.
By adding it to the loss function, we are encouraging the learned representations to be similar
for the actions with the same selected labels and different for other actions. We analyze the
effect of these in Table 4.

Methods for cross-video matching. In Table 4, we compare the results for the different
methods of cross-video matching on the 50-salads dataset. We compare both the triplet loss
and the constrastive loss (see sup. material) using them as part of the cost function, training
loss function or both. We find that using the contrastive as part of the training loss performs
the best, as this further encourages the learned representation to match the chosen labels.

Methods for length modeling. In Table 5, we compare the different methods to model
the length of each action. We find that learning the length of each action is most beneficial.

3 Implementation Details

The model is implemented in PyTorch. The pretrained models are on Kinetics-600 with
overlapping classes removed, as is standard practice for unsupervised approaches (see Sec-
tion 5 below for all removed classes). As base networks, which are needed to obtain initial
features from the videos, we use and compare VGG [7], I3D [2] and AssembleNet [6]. These
cover a wide range of networks previously used for video understanding (e.g. I3D), for unsu-
pervised video segmentation, where VGG is often used, and current state-of-the-art models
(AssembleNet). Our main model uses the AssembleNet backbone as a more contemporary
model, which contains ResNet blocks of interleaved spatial and 1d temporal convolutions. It
is equivalent in the number of parameters to a ResNet-50 (2+1)D network.

We used all three constraints (C1, C2, C3) with the weights set as described in Section
3.2 of the main paper. We used cross-video matching in the loss function with the triplet loss
formulation. We used the learned Poisson version of length modeling. These corresponded
to the best values in each of Tables 4 and 5 here and Table 5 of the paper.

During evaluation, we use a greedy rule selection method to pick the rule at each time
step, so only one sequence is generate for each sample. We note that other methods are
possible, such as generating multiple sequences and picking the best one. Using the greedy
method, it is possible that it generates missing or repeated actions. However, since the cost
function is not used during evaluation, we observe that this has minimal impact on the model.

1To isolate the effect, Table 4 uses the length model without learning, and Table 5 uses no cross video matching.

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Carreira and Zisserman} 2017

Citation
Citation
{Ryoo, Piergiovanni, Tan, and Angelova} 2020

6 PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS

Method Model Length (sec) GT Length (sec)

Baseline Avg. 18 15
Gaussian (no learning) 16 15
Gaussian (learned) 14 15
Poisson (no learning) 16 15
Poisson (learned) 13 15

Table 6: Statistics on the learned average action length and GT length on the NIV dataset.

Input Features. In the experiments, as mentioned, we use VGG, I3D and AssembleNet
as initial features. VGG and I3D use RGB inputs, while AssembleNet (by network design)
uses RGB and optical flow as input. The optical flow is computed over RGB inputs on the
fly. The CTC and ECTC methods, which are also comprated in the paper, use IDT features
[8] features on the 50-salads and Breakfast datasets and AssembleNet on the NIV dataset,
unless otherwise noted.

Specific Model Details. We provide specific details about the model size. For the various
experiments, |H|, the size of the set of states, was set to 50 for all experiments and datasets.
Changing this value did not significantly impact performance as long as it was greater than
the expected number of outputs |O|. R, the set of transition rules, was set to 3 per-state, a
total of 150, which is again fixed for all experiments. We use this strategy to be consistent
across experiments; this can be further tuned for specific dataset to improve performance.
We set M = 32, we note that we found the model was not sensitive to this setting, provided
it was larger than 8.

Evaluation Metrics details. We follow all previously established protocols for eval-
uation in each dataset. We first use the Hungarian algorithm to map the predicted action
symbols to action classes in the ground truth. Since different metrics are used for different
datasets we report the previously adopted metrics per dataset. Specifically, for NIV, we pre-
dict a temporal interval for each action, then compute the F1 score if the interval falls within
a ground truth interval (following [1]). For 50-salads, we compute the mean-over-frames
(MoF) which is the per-frame accuracy for each frame. For Breakfast, we report both the
MoF and Jaccard measure, following previous works [3, 4, 5].

4 Model Prediction Analysis
To show the model is not learning trivial solutions, here we provide some analysis of the
model predictions. In Table 6 and 7, we show the difference between the predicted length
and true action length.

5 Excluded Kinetics classes
We removed some classes from the Kinetics dataset, used to pretrain the models to obtain
the initial features, in order to avoid overlap with the actions we are trying to discover. We
also provide a list of some similar classes we left in Kinetics.

1. cooking egg

2. scrambling eggs

Citation
Citation
{Wang, Kl{ä}ser, Schmid, and Liu} 2011

Citation
Citation
{Alayrac, Bojanowski, Agrawal, Sivic, Laptev, and Lacoste-Julien} 2016

Citation
Citation
{Huang, Fei-Fei, and Niebles} 2016

Citation
Citation
{Kukleva, Kuehne, Sener, and Gall} 2019

Citation
Citation
{Richard, Kuehne, and Gall} 2017

PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS 7

Method Action Model Length (sec) GT Length (sec)

Gaussian (learned) Take Plant 22 18
Gaussian (learned) Use Soil 8 13
Gaussian (learned) Loosen Roots 12 16
Gaussian (learned) Place Plant 7 5
Gaussian (learned) Add Soil 17 22
Gaussian (learned) Water Plant 15 15

Table 7: Statistics on the learned average action length and GT length on the Repot a plant
action in NIV dataset. Each action has a different length and the Gaussian model is able to
learn this.

3. preparing salad

4. making a sandwich

Similar actions left in:

1. peeling apples/potatoes (similar to 50-salads peeling cucumber)

2. cutting apple/orange/watermelon/pineapple (similar to 50-salads cutting cucumber,
cutting tomato, and cutting cheese)

3. changing wheel (similar to NIV changing a tire)

4. planting trees (similar to NIV repotting plant)

5. frying vegetables (similar to Breakfast frying an egg)

References
[1] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, and Simon

Lacoste-Julien. Unsupervised learning from narrated instruction videos. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4575–4583, 2016.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[3] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal modeling for weakly
supervised action labeling. In Proceedings of European Conference on Computer Vision (ECCV),
2016.

[4] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen Gall. Unsupervised learning of action
classes with continuous temporal embedding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 12066–12074, 2019.

[5] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learning with rnn
based fine-to-coarse modeling. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

8 PIERGIOVANNI ET AL.: SUPPLEMENTAL MATERIALS

[6] Michael S. Ryoo, AJ Piergiovanni, Mingxing Tan, and Anelia Angelova. Assemblenet: Searching
for multi-stream neural connectivity in video architectures. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=SJgMK64Ywr.

[7] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[8] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition by dense
trajectories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3169–3176. IEEE, 2011.

https://openreview.net/forum?id=SJgMK64Ywr

