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1 Additional EPOSH dataset details

1.1 Dataset creation
As mentioned in the main draft, we used COLMAP to reconstruct a 3D dense point cloud
given a video clip. As a first step, we sampled images with resolution 1920× 1080 at 12
frames per second from the input video. Apart for the following settings, default settings
were used everywhere during reconstruction,

• radial ‘RADIAL_FISHEYE’ camera model

• ‘exhaustive_matcher’ feature matcher is used for the feature matching step.

• Memory cache size is set to 40 GB wherever applicable.

• ‘PatchMatchStereo.window_radius’ is set to 15 to make reconstruction more dense.
During image undistortion, the parameter ‘max_image_size’ is set to 4000.

The output produced by COLMAP is not to metric scale. Therefore, each point cloud
reconstructed by COLMAP is rescaled to metric scale.

1.2 Dataset classes and attributes
In Table 1 (of the main draft), all topology related classes in the first column except for ‘Road
curb line’ are annotated with polygons. ‘Road curb line’ is annotated with polylines1.

Lane lines and cross-walks have orientation as an attribute. We defined orientation sim-
ilar to how [2] have defined for the BDD100k dataset. Orientation is either parallel or
perpendicular to the direction of movement of ego car.

Each lane instance is also annotated for affordance, defined as the set of action choices
‘afforded’ to a vehicle, given its location. The affordance classes are defined in the last row
of the planning related section in Table 1 (of the main draft). Figure 9 (b) shows an example
of affordance annotation from the EPOSH dataset. Figure (b) shows the different types of
Symbolic Road Markings annotated in the dataset. Figure 10 illustrates the ‘inside inter-
section area’ class. Figure 11 shows some examples from the EPOSH perspective dataset.
Figure 12 shows some examples from the EPOSH BEV dataset.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1A polyline is a connected sequence of line segments created as a single object.
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(a)

Left 
turn

Straight, 
Change 
lane(right)
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lane(left)

(b)

Figure 9: Subplot (a) shows the 5 different Symbolic Road Marking attributes annotated in
the the EPOSH dataset dataset - Straight, Left, Right, Straight-Left & Straight-Right. All
other SRMs are annotated as ‘other’. Subplot (b) shows an example of affordance annota-
tions from the EPOSH dataset.

Inside Intersection area (4-way)

(a) (b)

Figure 10: An example of the class ‘inside intersection area’. The class has attributes as
the type of intersection (3-way or 4-way). In the example in the figure, this type is 4-way
intersection.

2 Additional qualitative results
The supplementary material folder also contains a video titled ‘output.mp4’ which shows
qualitative results from the NuScenes dataset using our method. All the 6 surround cameras
from the NuScenes dataset are used as input. Note that the our method uses monocular
camera image as input for making predictions. Monocular BEV segmentation prediction for
each camera is stitched to create surround prediction. The corresponding ground truth is also
shown in the video. In the Ground Truth (GT) for NuScenes BEV dataset produced by [1],
occluded areas are masked as seen in the video. These areas are masked in the prediction as
well.
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Figure 11: Some examples from the EPOSH persepctive dataset. The first column shows
the image captured from camera, the second column shows planning related classes and the
third column shows topology related classes. Some classes like crosswalks, lane lines are
merged and shown with a single color for easier visualization. All attributes in the dataset
are also not shown in the visualization.
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Image Topology related Planning related Image Topology related Planning related

Figure 12: Some examples from the EPOSH BEV dataset.
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