
WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS 1

Neighborhood-Aware Neural Architecture
Search (Supplementary Materials)

Xiaofang Wang, Shengcao Cao*,
Mengtian Li*, Kris M. Kitani
{xiaofan2,shengcao,mtli,kkitani}@cs.cmu.edu

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA, USA

A Aggregation Function

A.1 More Choices for Aggregation Function

Our formulation aims to identify flat minima in the search space based on the aggregated
performance g(f (N (α))) over the neighborhood. The aggregation function g(·) needs to
be properly set such that minimzing g(f (N (α))) results in an architecture α that is a local
minimum and at the same time has a flat neighborhood.

The flatness of the neighborhood of α is determined by how much the performance (e.g.,
validation loss) of its neighboring architectures varies compared to α itself. Intuitively, when
α is a flat minimum, its neighboring architectures should perform similarly to α . However,
when α is a sharp minimum, the loss of architectures around α increases drastically com-
pared to α . Although the formal definition of flatness or sharpness of a local minimum is not
exactly the same in previous work [1, 5, 8, 9, 17], they all share this intuition.

We discuss possible choices for the aggregation function g(·):
• mean, median or max.

The architectures around a sharp minimum tend to high much higher loss compared
to this minimum. Therefore, the mean validation loss of architectures around a flat
minimum is expected to be lower than those around a sharp minimum. Minimizing
mean(f (N (α))) encourages the convergence to an architecture α whose neighbors in
N (α) all have a low loss, which implies that α is a flat minima. This makes mean a
valid choice. For a similar reason, median and max are also valid choices.

Setting g(·) as mean or max also aligns well with previous work on flat minima. [1]
propose an objective function for training neural networks so that flat minima are pre-
ferred during optimization. Their objective can be interpreted as a weighted average
of the (transformed) function values of data points around the local minima, which
inspires us to consider mean as one of the choices for g(·). [9] use the largest function
value that can be attained in the neighborhood of a local minimum to characterize how
sharp the minimum is, which leads us to set g(·) as max.

• Variance.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* indicates equal contribution.

Citation
Citation
{Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, and Zecchina} 2017

Citation
Citation
{Dinh, Pascanu, Bengio, and Bengio} 2017

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Keskar, Mudigere, Nocedal, Smelyanskiy, and Tang} 2017

Citation
Citation
{Yao, Gholami, Lei, Keutzer, and Mahoney} 2018

Citation
Citation
{Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, and Zecchina} 2017

Citation
Citation
{Keskar, Mudigere, Nocedal, Smelyanskiy, and Tang} 2017

2 WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS

For an architecture α , we can measure its flatness with the variance (standard de-
viation) of the performance of its neighbors in N (α). Let σ(f (N (α))) denote the
standard deviation of the performance (e.g., validation loss) of architectures in N (α).
But simply minimizing σ(f (N (α))) can only result in an α with a flat neighborhood,
but cannot guarantee that α is a local minimum (e.g., have a low validation loss).
So we propose the following variance-based aggregation function g(f (N (α))) =
f (α) + λσ(f (N (α))) that takes both the performance of α and the flatness of its
neighborhood into account, where λ is a hyper-parameter to balance the performance
f (α) and the flatness σ(f (N (α))).

A.2 Aggregation Function in Differentiable Architecture Search

When applying our formulation to differentiable NAS methods, g(·) needs to be differen-
tiable, which immediately rules out median. Our default choice is mean and we provide an
outline of NA-DARTS using mean in the main text.

Both mean and the variance-based aggregation function are differentiable. We prefer
mean because it requires fewer GPU memory. Theoretically, when computing ∇α g(f (N (α))),
we need to keep all architectures in N (α) in GPU. But when g(·) = mean, we can compute
∇α f (α ′) separately for each neighbor α ′ ∈ N (α). Since PyTorch [15] automatically accu-
mulates the gradient in multiple backward passes, computing ∇α f (α ′) separately is equiva-
lent as computing ∇α mean(f (N (α))). Therefore, when using mean, we only need to keep
one architecture in GPU. This requires much fewer GPU memory than the variance-based
aggregation function.

We prefer mean over max due to its superior empirical performance. When using max,
Eq. 5 becomes a minimax optimization problem and one can approximate the gradient of
the objective using Danskin’s Theorem [3]. Same as mean, max also only needs to keep one
architecture in GPU (see following text for more details).

Algorithm 1 Neighborhood-Aware DARTS

Input: Number of steps T . Number of neighbors nnbr. Initial architecture α and weights
w.
for t = 1,2, . . . ,T do

Sample a batch of training data Xtrain and a batch of validation data Xval.
Sample nnbr neighboring architectures of α: N (α).
if g(·) == max then

Compute ᾱ = argmaxα ′∈N (α)Lval(w,α ′) on Xval.
Compute ∇αLval(w, ᾱ) on Xval; update α by descending ∇αLval(w, ᾱ).

else if g(·) == mean then

Compute ∇α

∑α ′∈N (α)Lval(w,α ′)
|N (α)| on Xval; update α by descending ∇α

∑α ′∈N (α)Lval(w,α ′)
|N (α)| .

end if
Compute ∇wLtrain(w,α) on Xtrain; update w by descending ∇wLtrain(w,α).

end for
Derive the final architecture based on the learned α .

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Danskin} 1967

WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS 3

Algorithm 2 Neighborhood-Aware Random Search

Input: Number of steps T . Number of neighbors nnbr.
for t = 1,2, . . . ,T do

Randomly sample an architecture from A: α .
Sample nnbr neighboring architectures of α: N (α).
Train the nnbr architectures and compute g(f (N (α))).
Let α∗ = α if g(f (N (α)))< g(f (N (α∗))).

end for
Return the optimal architecture α∗.

A.2.1 Using max in NA-DARTS

For completeness, we describe details of using max in NA-DARTS. After setting g(·) as max,
Eq. 5 becomes a minimax optimization. According to Danskin’s Theorem [3], we can ap-
proximate the gradient ∇α maxα ′∈N (α)Lval(w∗(α ′),α ′) with ∇αLval(w∗(ᾱ), ᾱ), where ᾱ is
the maximizer of the inner maximization problem maxα ′∈N (α)Lval(w∗(α ′),α ′). In practice,
w∗(α ′) is approximated by the current network weights w. To compute the maximizer ᾱ ,
we simply compute the validation loss of each sampled neighboring architecture and choose
the maximum one. We provide an outline of NA-DARTS in Algorithm 1, where we include
steps for both cases (g(·) = max or g(·) = mean). As can seen from Algorithm 1, when using
max, we only need to keep one architecture (ᾱ) in GPU during the gradient computation.

Solving the inner maximization problem maxα ′∈N (α)Lval(w∗(α ′),α ′) is the process of
finding the worst-performing neighbor of α in its neighborhood. Sampling neighbors with
the additive representation of neighbors (Eq. 6) might not always result in a neighbor α ′

that performs worse than α . So, we develop the following multiplicative representation
of neighboring architectures. The multiplicative representation allows us to sample α ′ by
changing a subset of operations in α to the zero operation or skip connection such that α ′

has a higher probability to perform worse than α . Let edge (i, j) be an edge to be perturbed
and r(i, j) be a m-dim one-hot vector with r(i, j)l = 1 and r(i, j)k = 0(1 ≤ k ≤ m,k 6= l). We
restrict l to be either the index of the zero operation or skip connection. With the one-hot
vector r(i, j), α ′(i, j) is computed as:

α
′(i, j)
k =

r(i, j)k α
(i, j)
k

∑r(i, j)k α
(i, j)
k

. (A)

Under the multiplicative representation, α ′(i, j) has the same value as r(i, j), which indicates
that the edge (i, j) after perturbation chooses either the zero operation or skip connection.
We empirically observe that max works better with the multiplicative representation than
additive representation.

B Assumption Justification

B.1 Experimental Setup
We describe the detailed setup of our assumption justification experiments in Sec. 3.3. NAS-
Bench-201 [6] provides a simulated environment for NAS experiments by conducting a thor-
ough evaluation of all the candidate architectures (cells) in a pre-defined cell search space

Citation
Citation
{Danskin} 1967

Citation
Citation
{Dong and Yang} 2020

4 WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS

(a) f (α) = CIFAR-10-Validation error after the 30th epoch.

CIFAR-10-Validation CIFAR-10 CIFAR-100 ImageNet-16-120

Flat minima 18.39 6.33 29.15 55.52
Sharp minima 18.45 6.67 30.10 56.18

(b) f (α) = CIFAR-10-Validation error after the 60th epoch.

CIFAR-10-Validation CIFAR-10 CIFAR-100 ImageNet-16-120

Flat minima 16.15 6.28 29.15 55.51
Sharp minima 16.43 6.91 30.56 57.31

(c) f (α) = CIFAR-10-Validation error after the 90th epoch.

CIFAR-10-Validation CIFAR-10 CIFAR-100 ImageNet-16-120

Flat minima 14.55 6.23 28.90 55.17
Sharp minima 14.57 6.66 30.00 56.41

(d) f (α) = CIFAR-10-Validation error after the 120th epoch.

CIFAR-10-Validation CIFAR-10 CIFAR-100 ImageNet-16-120

Flat minima 12.67 6.13 28.59 55.11
Sharp minima 12.81 6.33 29.28 55.53

Table A: Average error of flat-minima architectures and sharp-minima architectures.
“CIFAR-10-Validation” refers to the average validation error on CIFAR-10 used in search.
CIFAR-10, CIFAR-100 and ImageNet-16-120 refer to the average test error on each dataset.
Flat minima and sharp minima obtain a similar validation error on CIFAR-10. However, flat
minima consistently achieves lower test error than sharp minima on all three datasets.

on three datasets: CIFAR-10 [10], CIFAR-100 [10], and ImageNet-16-120 [6]. It contains
the validation error (accuracy) of all the candidate architectures on CIFAR-10 after every
training epoch, and the final test error on CIFAR-10, CIFAR-100, and ImageNet-16-120.
ImageNet-16-120 is a subset and downsampled version of ImageNet [16] and contains about
158K images divided into 120 classes.

In our experiments, we set the distance threshold d to 1, so each architecture in the NAS-
Bench-201 search space has 25 neighbors including itself. We search on CIFAR-10 and
evaluate the found architectures on all three datasets, i.e., f (α) is defined as the validation
error on CIFAR-10. It is common in NAS to use early stopping or budgeted training during
search [7, 12]. So, we use the CIFAR-10-Validation error after the 90th epoch in the exper-
iments, unless otherwise stated. Results for other epochs (e.g., 30th, 60th, 120th) lead to the
same conclusion.

B.2 Flat Minima Generalize Better

We provide results for other epochs to show that flat minima in the architecture space gener-
alize better than sharp minima. Specifically, we conduct the same experiments as Sec. 3.3.1
(Table 1a in the main text) with the CIFAR-10-Validation error after the 30th, 60th or 120th

epoch. As shown in Table A, results for all epochs (30th, 60th, 90th, 120th) demonstrate the

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Dong and Yang} 2020

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{Elsken, Metzen, and Hutter} 2019

Citation
Citation
{Li, Yumer, and Ramanan} 2020

WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS 5

same pattern: the average validation error on CIFAR-10 of flat minima and sharp minima
are similar; however, the average test error of flat minima is consistently lower than sharp
minima on all three datasets, especially on CIFAR-100 and ImageNet-16-120.

B.3 Aggregated Performance Gives a Better Ranking of Architectures

We show that our criterion g(f (N (α))) ranks architectures more accurately than the stan-
dard criterion f (α). To do that, we randomly sample 100 architectures from NAS-Bench-201
and rank these architectures according to our criterion g(f (N (α))) or the standard criterion
f (α), where f (·) is the validation error on CIFAR-10. Following [18], we evaluate the esti-
mated ranking with the Kendall’s Tau metric (the higher the better), which measures the cor-
relation between the estimated ranking and ground truth ranking of architectures. The ground
truth is obtained by sorting these architectures based on their test error. As the ground truth
is specific to each dataset, we evaluate the estimated ranking on the three datasets separately.

We repeat the experiments for 10 times and report the mean and standard deviation of
the Kendall’s Tau value. Table 1b (main text) shows the ranking estimation results when
g(·) = mean. We provide the results for all the aggregation functions in Table B. For the
variance-based aggregation function, we set λ to 1.0. All aggregation functions except max
result in an more accurate ranking estimation of architectures than the standard criterion
f (α).

CIFAR-10 CIFAR-100 ImageNet-16-120

Baseline 0.66±0.03 0.66±0.02 0.64±0.03

Ours - mean 0.76±0.03 0.77±0.03 0.74±0.03
Ours - median 0.72±0.03 0.72±0.03 0.69±0.03
Ours - max 0.53±0.05 0.54±0.05 0.56±0.05
Ours - Variance 0.72±0.02 0.73±0.03 0.71±0.02

Table B: Kendall’s Tau (rank correlation) obtained by the standard criterion f (α) (baseline)
and our criterion g(f (N (α))) with different choices of g(·).

Neighbor-Var CIFAR-10 CIFAR-100 ImageNet-16-120

Baseline 5.58 6.45 29.45 55.79

Ours - mean 2.71 6.09 28.32 54.75
Ours - median 4.05 6.21 28.74 55.08
Ours - max 1.83 6.66 29.82 56.31
Ours - Variance 2.47 6.35 29.06 55.52

Table C: Neighborhood variance and test error of architectures found by by the standard cri-
terion f (α) (baseline) and our criterion g(f (N (α))) with different choices of g(·). Architec-
tures found by the mean validation error (‘Ours - mean’) have a much smaller neighborhood
variance than those found by the baseline criterion, and also achieve lower classification
error on all three datasets.

Citation
Citation
{Yu, Sciuto, Jaggi, Musat, and Salzmann} 2020

6 WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS

B.4 Aggregated Performance Finds Flat Minima

We conduct quantitative analysis to show that optimizing the proposed criterion, i.e., the ag-
gregated performance over the neighborhood g(f (N (α))), successfully finds flat minima.
We select 100 architectures from NAS-Bench-201 with the lowest validation error (standard
criterion) and another 100 architectures with the lowest aggregated validation error (pro-
posed criterion) on CIFAR-10.

We measure the flatness of an architecture with its neighborhood variance: the variance
of the search-time validation error of its neighboring architectures on CIFAR-10. A smaller
variance indicates a flatter neighborhood. We summarize the neighborhood variance and test
error of the found architectures in Table C. We observe that optimizing the mean validation
error (‘Ours - mean’) can successfully help us find flat minima, as the found architectures
have a much smaller neighborhood variance than those found by the baseline criterion, and
also achieve lower classification error on all three datasets.

We also notice that when g(·) = max, the found architectures are not flat minima. Al-
though these architectures have a flat neighborhood (low neighborhood variance), their clas-
sification performance is worse than architectures found by the baseline criterion. We think
this is because when using max, the objective g(f (N (α))) only considers the flatness of the
neighborhood, but fails to characterize how well the architecture α performs.

C NA-RS

Experimental setup. An outline of NA-RS is provided in Algorithm 2. Same as the setup in
the assumption justification experiments, we search on CIFAR-10 and evaluate on CIFAR-
10 [10], CIFAR-100 [10], and ImageNet-16-120 [6]. The number of search steps T in NA-
RS is set to 100. For fair comparison, the standard random search (baseline; denoted as
‘RS’) is run for T · nnbr steps, so that RS and NA-RS train and evaluate the same number
of architectures. We set the distance threshold d to 1, so the neighborhood contains 25
architectures including the reference architecture itself. We set nnbr to 10 unless otherwise
stated.

Ablation study. We provide an ablation study of the aggregation function in NA-RS in
Table D and an ablation study of nnbr in Table E. We see from Table D that mean and median
achieve the best performance among all the choices for g(·). max performs the worst, which
is consistent with the conclusion in Table B. As shown in Table E, performance obtained by
nnbr = 10 is close to nnbr = 25, which indicates that sampling a subset of neighbors is a good
approximation for the entire neighborhood.

CIFAR-10 CIFAR-100 ImageNet-16-120

NA-RS - mean 6.39±0.71 28.68±1.75 55.02±1.71
NA-RS - median 6.20±0.35 28.33±1.22 54.72±0.96
NA-RS - max 6.73±0.71 29.70±1.61 56.96±2.09
NA-RS - Variance 6.65±0.97 29.06±1.97 55.48±2.41

Table D: Ablation study on the aggregation function in NA-RS. mean and median yield the
lower test error among all the choices for g(·).

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Dong and Yang} 2020

WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS 7

CIFAR-10 CIFAR-100 ImageNet-16-120

NA-RS - mean nnbr = 10 6.39±0.71 28.68±1.75 55.02±1.71
nnbr = 25 6.24±0.39 28.24±1.25 54.74±1.73

NA-RS - median nnbr = 10 6.20±0.35 28.33±1.22 54.72±0.96
nnbr = 25 6.18±0.38 28.20±1.27 54.40±0.98

Table E: Ablation study on nnbr in NA-RS. Sampling a subset of neighbors (nnbr = 10) is a
good approximation for the entire neighborhood (nnbr = 25).

D NA-DARTS

D.1 Experimental Setup
Following DARTS [14], we search on CIFAR-10 [10] and evaluate on CIFAR-10 [10],
CIFAR-100 [10] and ImageNet [16]. We use exactly the same setup as DARTS [14], in-
cluding the cell search space, hyper-parameters, such as the learning rate and weight decay
factor, and other experimental details. We split the training images in CIFAR-10 into two
subsets of equal size, which are used as the training and validation images during search. We
construct a network of 8 cells with an initial channel number as 16 and train the network for
50 epochs to learn α .

After the search is done, we derive the final architecture from the learned α using exactly
the same procedure as DARTS. When evaluating the found architecture on CIFAR-10 and
CIFAR-100, we build a network of 20 cells and train it for 600 epochs with batch size 96 and
cutout [4]. For our NA-DARTS, We set the initial number of channels of the network such
that it has a similar network size with DRATS and contains around 3M parameters.

When evaluating on ImageNet, we build a network of 14 cells. Following DARTS, the
network is trained for 250 epochs with batch size 128. We set the initial number of channels
such that the number of multiply-add operations in the network is fewer than 600M when the
input is 224× 224. Some NAS methods use a different training setup to train the found ar-
chitecture on ImageNet. For example, DARTS+ [13] trains for 800 epochs and P-DARTS [2]
uses a large batch size 1024 (need 8 V100 GPUs, infeasible to us). For fair comparison, we
retrain the found architecture reported by the authors in their paper using the same training
setup as DARTS.

For our NA-DARTS, we sample a subset of 10 neighbors in each step, i.e., nnbr = 10.
The distance threshold d for neighborhood can be interpreted as the number of edges to be
perturbed. As each cell in the DARTS search space has 14 edges, we set d to 6. The noise
threshold ε in the additive representation is set to 0.1. All experiments are performed on a
NVIDIA GeForce RTX 2080 Ti GPU.

D.2 Ablation Study
Aggregation function. We report the performance of NA-DARTS when using mean or max
as the aggregation function in Table Fa. We observe that mean outperforms max, which
is consistent with the conclusion in Table B. We also notice that mean consumes a longer
search time than max. This is because when using mean, we need to back-propagate through
every sampled neighboring architecture α ′, while we only need to back-propagate through
one neighboring architecture ᾱ when using max.

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{DeVries and Taylor} 2017

Citation
Citation
{Liang, Zhang, Sun, He, Huang, Zhuang, and Li} 2019

Citation
Citation
{Chen, Xie, Wu, and Tian} 2019

8 WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS

Distance threshold. We study the impact of the distance threshold of d in Table Fb,
where we observe d = 6 achieves the best performance and d = 4 performs similarly with
d = 6. Recall that the distance threshold d can be interpreted as the number of edges to be
perturbed and the cell in the DARTS search space has 14 edges. We empirically find that
when d becomes larger that 6, the neighborhood becomes too large and the performance
drops.

(a) Impact of aggregation function.

Test Error (%) Param Search Cost
CIFAR-10 CIFAR-100 (M) (GPU days)

max 2.80±0.10 16.89±0.31 3.1 0.5
mean 2.63±0.12 16.48±0.13 3.2 1.1

(b) Impact of d.

Test Error (%) Param
CIFAR-10 CIFAR-100 (M)

d = 2 2.62±0.08 16.90±0.45 3.2
d = 4 2.65±0.19 16.56±0.36 3.1
d = 6 2.63±0.12 16.48±0.13 3.2

Table F: Ablation study of NA-DARTS.

E Loss Landscape Visualization

To qualitatively examine whether our NA-DARTS has found a flat minima, we plot the loss
landscape of DARTS and NA-DARTS with the visualization strategy from [11]. Let α denote
the architecture found by DARTS or NA-DARTS. We compute the Hessian of the validation
loss with respect to α , and v0 and v1, which are the eigenvectors corresponding to the two
largest eigenvalues of the Hessian matrix. Then we visualize the validation loss of the neigh-
bors of α over the plane spanned by v0 and v1. Specifically, we compute the validation loss
of the architecture α+λ0v0+λ1v0, where λ0 and λ1 are uniformly sampled from [−1.0,1.0].
The loss values are visualized by the contour plots in Figure A. We observe that the curvature
of NA-DARTS at (0,0) (the found architecture α) is much flatter than that of DARTS.

We provide details of the neighboring architecture α ′ = α +λ0v0+λ1v0, where we over-
load the plus sign (+) with the additive representation. Recall that α contains a set of vari-
ables representing the operation choice for each edge (i, j): α = {α(i, j)}. The eigenvectors
v0 and v1 have the same dimension as α and then can be represented as v0 = {v(i, j)0 } and

v1 = {v(i, j)1 }. Let q(i, j) = λ0v(i, j)0 +λ1v(i, j)1 . α ′(i, j) is then computed using the additive repre-

sentation in Eq. 6 (α ′(i, j)k =
α
(i, j)
k +q(i, j)k

∑
n
k=1(α

(i, j)
k +q(i, j)k)

). The eigenvectors v0 and v1 are normalized so

that the scale of the noise vector q(i, j) is controlled only by λ0 and λ1. We use the weights of
α obtained in the search as an approximation for the weights of the neighbors α ′.

Citation
Citation
{Li, Xu, Taylor, Studer, and Goldstein} 2018

WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS 9

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
1 0.500

0.750
1.000

1.250

1.500

1.750

1.750

2.0
00

2.000

2.250

2.250

2.500

2.500

2.750

2.750

3.000

3.250

3.500

3.7
50

4.000

4.250

4.500

4.750

5.000

5.250

Validation Loss

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1

0.500

0.7
50

1.000

1.250

1.500

1.750

2.000

2.2
50

2.500

2.750

2.750

3.000

3.000

3.
25

0

3.250

3.500

3.500

3.750

3.750

4.000

4.000

4.250

4.250

4.500

4.500

4.750

4.750 5.000

5.000

5.250

5.250

Validation Loss

(a) DARTS (standard formulation min f (α)).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1

0.750

1.000

1.000

1.250

1.250

1.250

1.500

1.500

1.750

1.750

2.000

2.000

2.250
2.250 2.500

2.750
3.000

3.250

3.5
00

3.750

Validation Loss

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1
0.750

1.000

1.250

1.250

1.250

1.500

1.500

1.750

1.750

2.000

2.250

Validation Loss

(b) NA-DARTS (neighborhood-aware formulation ming(f (N (α)))).
Figure A: Loss landscape visualization of the found architecture. The two plots in Figure Aa
(Figure Ab) are generated from two independent runs of DARTS (NA-DARTS). The left plot
in Figure Aa and Figure Ab are the same as the plots in Figure 1 in the main text. For the
architecture found by DARTS (Figure Aa), we observe that the loss of its neighbors increase
drastically as the magnitude of λ0 or λ1 increases. However, for the architecture found by
our NA-DARTS (Figure Ab), the loss of its neighbors increases much slower. This shows
that the architecture found by our NA-DARTS is a much flatter minimum than that found by
DARTS.

F Cell Visualization

We visualize the normal cell and reduction cell found by DARTS and our NA-DARTS in
Figure B. We observe that the normal cell found by our method NA-DARTS tend to be
deeper than that found by DARTS. Normal cells found by our NA-DARTS from different
runs have a depth of 3 at most of the time, while normal cells found by DARTS mostly have
a depth of 1 or 2. We also observe that the normal cell found by NA-DARTS contains more
5×5 convolution operations. Both of the reduction cells found by DARTS and NA-DARTS
contain very few convolution operations. Most operations in the reduction cell do not have
parameters, e.g., pooling and skip-connection.

10 WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2skip_connect

3
skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

dil_conv_3x3

c_{k}

c_{k-2}

0

max_pool_3x3 2
max_pool_3x3

c_{k-1}

max_pool_3x3

1

max_pool_3x3

3

max_pool_3x3

skip_connect

skip_connect

skip_connect c_{k}

(a) DARTS normal cell (left) and reduction cell (right).

c_{k-2}

0

sep_conv_3x3 1

skip_connect

2
sep_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_3x3
c_{k}

dil_conv_5x5

3
dil_conv_3x3

dil_conv_5x5

c_{k-2}

0
max_pool_3x3

1max_pool_3x3

2
max_pool_3x3

3avg_pool_3x3

c_{k-1}
max_pool_3x3 dil_conv_5x5

skip_connect

c_{k}
skip_connect

(b) NA-DARTS normal cell (left) and reduction cell (right).
Figure B: Cell Visualization.

References
[1] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi,

Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd:
Biasing gradient descent into wide valleys. In ICLR, 2017.

[2] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In ICCV, 2019.

[3] John M Danskin. The theory of max-min and its application to weapons allocation
problems. Springer, 1967.

[4] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[5] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In ICML, 2017.

[6] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In ICLR, 2020.

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. JMLR, 2019.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 1997.

[9] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. In ICLR, 2017.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[11] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. In NeurIPS, 2018.

WANG, CAO, LI, KITANI: NEIGHBORHOOD-AWARE NAS 11

[12] Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted training: Rethinking deep
neural network training under resource constraints. In ICLR, 2020.

[13] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen
Zhuang, and Zhenguo Li. Darts+: Improved differentiable architecture search with
early stopping. arXiv preprint arXiv:1909.06035, 2019.

[14] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In ICLR, 2019.

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS,
2019.

[16] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. IJCV, 2015.

[17] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-
based analysis of large batch training and robustness to adversaries. In NeurIPS, 2018.

[18] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann.
Evaluating the search phase of neural architecture search. In ICLR, 2020.

