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A PAC performance with different target shots.
In Figure 1, we plot the target accuracy of 4 methods on the real to clipart adaptation sce-
nario of Office-Home, for different number of labelled target examples. The method “CR”
represents the consistency regularization part of PAC, meaning it starts with an Imagenet
pretrained backbone, same as S+T and MME [13]. We see that with its domain alignment
approach, MME performs well at 0 shots. However, along with pretraining using rotation
prediction, which has some alignment effect, PAC does not lag far behind. As the number
of labelled examples increase, we see all methods enjoy a significant boost in performance,
where the error has an exponential relation to the number of labelled examples as indicated
by Eq. 1 (main paper). Since PAC and CR have better feature space clustering, i.e., they
have a higher inter-class divergence D, they see a bigger reduction in error.

B More questions
Can consistency regularization fix more errors than MME? Short answer : yes. In Sec-
tion 5 of the main paper, we mentioned that consistency regularization, because of the per-
turbations it makes in image space, can fix errors of the kind that simple conditional entropy
minimization, the way it is done in MME, cannot. We validate this hypothesis by training
both methods from a randomly initialized feature extractor, where we expect initial features
to have a much less meaningful neighborhood in feature space. In Table 1, we see a larger
gap in the performance of MME starting from a pretrained vs a randomly initialized back-
bone, which tells us that consistency regularization can fix a lot more errors in the initial
feature space than MME. Note that “Ours (CR)” method here does not include any rotation
pretraining for this comparison.
Which perturbation technique is best for consistency? We compared three different im-
age augmentation approaches : RandAugment [3] involves a list of 14 different augmenta-

c© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Saito, Kim, Sclaroff, Darrell, and Saenko} 2019

Citation
Citation
{Cubuk, Zoph, Shlens, and Le} 2020



2 MISHRA, SAENKO, SALIGRAMA: SSDA WITH PRETRAINING AND CONSISTENCY

0 1 2 3 4 5 6 7 8 9
Num Target Labels/Shots

35

40

45

50

55

60

65

Ac
cu

ra
cy

Performance with varying Number of Target Labels

S+T
MME
CR
PAC

Figure 1: Performance with different number of labelled target examples. MME benefiting
from domain alignment performs best at 0 shots. With more labelled examples, there is an
exponential decrease in target error (Eq. 1), with PAC and CR benefiting most due to better
target clustering, i.e., high inter-class divergence D

Method Imagenet pt. Random init.

MME 51.2 26.9
Ours (CR) 54.1 40.0

Table 1: Comparison of MME and our consistency regularization approach on Imagenet
pretrained backbone and randomly initialized backbone. Consistency regularization can fix
more initial feature space errors than MME.

tion schemes like translations, rotations, shears, color/brightness enhancements etc., 2 out
of which are chosen randomly anytime an image is augmented. We also evaluated color jit-
tering, since common objects in our datasets are largely invariant to small changes in color.
Finally we tried a combination of both, and found that this performed best for our method.
Fig 2 shows the comparison of the final target accuracies achieved using an Alexnet backbone
on the real to clipart adaptation scenario of Office-Home. Besides perturbations based on
augmentation, we also evaluated adversarial image perturbation via virtual adversarial train-
ing (VAT) [10]. When using VAT, we found improvements over the simple “S+T” method
(48.3% using VAT vs 44.6% without), but as seen from Fig 2, we found this was much lower
than image augmentation approaches. This is quite likely because image augmentation im-
poses a more meaningful neighborhood on images where class labels do not change, while
adversarial perturbation does not have this guarantee.
Can pretraining and consistency help other methods? An indication towards the affirma-
tive is seen when we train MME with pretraining and consistency on the 3-shot real to sketch
scenario of DomainNet using a Resnet-34 backbone. The results are shown in Table 2, where
we can see that pretraining and consistency both individually help MME’s performance, and
their combination helps it the most.
It was explained how pretraining improves initial feature space, but prior work has also
used “pretext” tasks like rotation prediction alongside classification for training [16,
19]. How does pretraining compare to that? A comparison of this can be found in table
3, which reports the 3-shot SSDA target accuracies of the two methods on the DomainNet
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Figure 2: Performance of our method with different augmentation/perturbation methods on
real to clipart adaptation of Office-Home. Adversarial perturbation helps, but not as much
as image augmentation approaches do. A combination of color jittering and RandAugment
performed the best.

Rotn CR Accuracy

61.9
X 65.8

X 70.4
X X 71.5

Table 2: Pretraining and consistency with MME.

dataset. As can be seen, pretraining using rotation prediction provides more of a performance
benefit as compared to using rotation prediction as an auxiliary task like [16, 19]. The latter
can help regularize final target classifier training, but likely does not have the benefits that
pretraining provides the method via a better initial feature space for training.

Method C2S P2C P2R R2C R2P R2S S2P Mean

S+T + Rotn pred 54.7 59.5 74.1 60.4 62.3 51.8 59.2 60.3
S+T (Rotn pred pretrained backbone) 59.1 65.3 74.0 64.1 63.9 56.1 61.7 63.5

Table 3: Comparison of rotation prediction for pretraining vs as an auxilliary training task
using target accuracies on 3-shot SSDA on different scenarios of DomainNet.

What if pretraining uses rotation prediction only on target? We train the backbone only
on target domain data for pretraining with rotation prediction, and then train it like PAC
using consistency regularization. On the 3-shot real to clipart SSDA scenario of Office-
Home using an Alexnet backbone, this achieves a final target accuracy of 57.5% compared
to 58.9% of PAC. This is indicative of target-only rotation prediction helping the initial
feature extractor, but not as much as in the case when source domain data is used along with
it.
How big is the role of source domain data in final target performance? To see this, we
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Rotn CR
Accuracy

(with source)
Accuracy

(only target)

X 56.6 35.5
X X 58.9 36.7

Table 4: Ablating source domain information.

0.5 0.6 0.7 0.8 0.9
64

66

68

70

72
Sensitivity to threshold

Val Accuracy
Test Accuracy

Figure 3: Sensitivity of our method to different thresholds used for consistency regulariza-
tion. Accuracies reported are on the 3-shot real to sketch scenario of DomainNet using a
Resnet-34 backbone.

train our method with no access to source domain data. This is similar to the semi-supervised
learning problem. Target accuracy with only 3 labelled target examples and access to all
other unlabelled examples, on the clipart domain of Office-Home using an Alexnet back-
bone, are in the last column of Table 4. For reference, the accuracies of our method with
source domain data from the real domain (i.e. R2C adaptation scenario) are provided in the
3rd column.

C PAC sensitivity to confidence threshold
Our consistency regularization approach uses soft targets based on outputs of the classifier
only in cases where the confidence of labelling is high. In Fig 3, we compare the sensitivity
of our method to this threshold. We see that higher confidence thresholds up to 0.9 help final
target classification performance.

D Results on Office and Office-Home
Office-Home [17] is a dataset with 65 categories of objects found in typical office and home
environments. It has 4 different visual domains (Art, Clipart, Product, and Real), and we
evaluate our methods on all 12 different adaptation scenarios. The 4 domains have close
to 3800 images on average. Office [12] dataset has objects of 31 different categories in
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Network Method D to A W to A
1-shot 3-shot 1-shot 3-shot

Alexnet

S+T 50.0 62.4 50.4 61.2
DANN 54.5 65.2 57.0 64.4
ADR 50.9 61.4 50.2 61.2
CDAN 48.5 61.4 50.2 60.3
ENT 50.0 66.2 50.7 64.0
MME 55.8 67.8 57.2 67.3
APE - 69.0 - 67.6
BiAT 54.6 68.5 57.9 68.2
CDAC 63.4 70.1 62.8 70.0
PAC 54.7 66.3 53.6 65.1

VGG

S+T 68.2 73.3 69.2 73.2
DANN 70.4 74.6 69.3 75.4
ADR 69.2 74.1 69.7 73.3
CDAN 64.4 71.4 65.9 74.4
ENT 72.1 75.1 69.1 75.4
MME 73.6 77.6 73.1 76.3
PAC 72.4 75.6 70.2 76.0

Table 5: Results on Office. We evaluate using the two scenarios where the target domain is
amazon

3 different domains—amazon, webcam and dslr, with approx. 2800, 800 and 500 images
respectively. Following [13] we evaluated only on the 2 cases with amazon as the target
domain, since the other two domains have a lot fewer images.

Table 6 shows the results of PAC on the different scenarios of Office-Home, the average
accuracy over all these scenarios was also reported in Table 3 in the main paper. Table 5
shows the accuracy of PAC on two scenarios of Office. We see that PAC performs compa-
rably to state of the art. It lags behind a little in the 1-shot scenarios as compared to 3-shot
ones.

E Experiment details
All our experiments were implemented in PyTorch [11] using W&B [1] for managing exper-
iments.

E.1 PAC experiments

We used three different backbones for evaluation in different experiments—Alexnet [9],
VGG-16 [15] and Resnet-34 [7]. Our backbones before being trained using the rotation
prediction task, are pretrained on the Imagenet [4] dataset, same as other methods used for
comparison. While using an Alexnet or VGG-16 feature extractor, we use 1 fully connected
layer as the classifier, and while using the Resnet-34 backbone, we use a 2-layer MLP with
512 intermediate nodes. The classifier C uses a temperature parameter set to 0.05 to sharpen
the distribution it outputs using a softmax. For consistency regularization, the confidence
threshold τ was set to 0.9 across all experiments, having validated on the real to sketch
scenario of DomainNet.
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Network Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P Mean

One-shot

Alexnet

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1
DANN 42.5 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1
ADR 37.8 63.5 45.4 53.5 32.5 32.2 49.5 31.8 53.4 49.7 34.2 50.4 44.5
CDAN 36.1 62.3 42.2 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2
ENT 26.8 65.8 45.8 56.3 23.5 21.9 47.4 22.1 53.4 30.8 18.1 53.6 38.8
MME 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2
BiAT - - - - - - - - - - - - 49.6
PAC 49.6 69.8 45.9 57.5 42.5 30.4 53.1 35.8 51.9 48.2 26.0 57.6 47.4

VGG

S+T 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4
DANN 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
ADR 39.7 76.2 60.2 71.8 37.2 51.4 63.9 39.0 68.7 64.8 50.0 65.2 57.3
CDAN 43.3 75.7 60.9 69.6 37.4 44.5 67.7 39.8 64.8 58.7 41.6 66.2 55.9
ENT 23.7 77.5 64.0 74.6 21.3 44.6 66.0 22.4 70.6 62.1 25.1 67.7 51.6
MME 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7
PAC 56.4 78.8 64.6 73.1 54.7 55.3 69.8 43.5 69.5 65.3 45.3 69.6 62.2

Three-shot

Alexnet

S+T 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0
DANN 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
ADR 45.0 66.2 46.9 57.3 38.9 36.3 57.5 40.0 57.8 53.4 37.3 57.7 49.5
CDAN 41.8 69.9 43.2 53.6 35.8 32.0 56.3 34.5 53.5 49.3 27.9 56.2 46.2
ENT 44.9 70.4 47.1 60.3 41.2 34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9
MME 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
APE 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6
BiAT - - - - - - - - - - - - 56.4
CDAC 54.9 75.8 51.8 64.3 51.3 43.6 65.1 47.5 63.1 63.0 44.9 65.6 56.8
PAC 58.9 72.4 47.5 61.9 53.2 39.6 63.8 49.9 60.0 54.5 36.3 64.8 55.2

VGG

S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ADR 49.0 78.1 62.8 73.6 47.8 55.8 69.9 49.3 73.3 69.3 56.3 71.4 63.1
CDAN 50.2 80.9 62.1 70.8 45.1 50.3 74.7 46.0 71.4 65.9 52.9 71.2 61.8
ENT 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
MME 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6
PAC 63.5 82.3 66.8 75.8 58.6 57.1 75.9 56.7 72.2 70.5 57.7 75.3 67.7

Table 6: Results on all adaptation scenarios of Office-Home.
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Same as [13], we train the models using minibatch-SGD, with s source examples, s
labelled target examples and 2s unlabelled target examples that the learner “sees” at each
training step. s = 24 for the VGG and Resnet backbones, while s = 32 for Alexnet. The SGD
optimizer used a momentum parameter 0.9 and a weight decay (coefficient of `2 regularizer
on parameter norm) of 0.0005. For all experiments, the parameters of the backbone are
updated with a learning rate of 0.001, while the parameters of the classifier are updated with
a learning rate 0.01. Both of these are decayed as training progresses using a decay schedule
similar to [5]. Learning rate at step i (ηi) is set as below:

ηi =
η0

(1+0.0001× i)0.75

For experiments on the Office and Office-Home dataset, we trained PAC using both an
Alexnet and a VGG-16 backbone, and the models were trained for 10000 steps with the
stopping point chosen using best validation accuracy.

For the experiments on DomainNet, we use both Alexnet and Resnet-34 backbones,
while for VisDA-17, we use only Resnet-34. All models in these experiments were trained
for 50000 steps, using validation accuracy for determining the best stopping point.

E.2 Pretraining
As mentioned above, we pretrain our models for rotation prediction starting from Imagenet
pretrained weights. A comparison of PAC with a backbone trained with rotation predic-
tion starting from imagenet pretraining (final target accuracy = 58.9%) vs one that does not
use any imagenet pretraining (final target accuracy = 43.7%), revealed that there is impor-
tant feature space information in imagenet pretrained weights that rotation prediction could
not capture on its own. This comparison was done using an Alexnet on the real to clipart
adaptation scenario of Office-Home.

Following Gidaris et al. [6], we trained the model on all 4 rotations of a single image in
each minibatch. Each minibatch contained s images each from source and target domains,
which translates to 4s images considering all rotations. The Alexnet backbones are trained
using a learning rate of 0.01 and s = 128. The Resnet-34 and VGG backbones are both
trained using s = 16 and a learning rate of 0.001. We found that beyond a certain point
early on in training, the number of steps of training for rotation prediction did not make a
big difference to the final task accuracy, and finally the chosen number of training steps was
4000 for Alexnet, 2000 for VGG-16 and 5000 for Resnet-34 backbones.

E.3 Other Experiments
MoCo pretraining. Using the Alexnet backbone, we trained momentum contrast [8] for
5000 training steps, where in each step the model saw 32 images each from the real and
the clipart domains of Office-Home. The queue length used for MoCo was 4096 and the
momentum parameter was 0.999.
SimSiam pretraining. Using the Alexnet backbone, we trained SimSiam [2] for 200 epochs
(or 6800 training steps) on a mix of the source (real) and target (clipart) sets of Office-Home,
with a batch size of 256.
Virtual Adversarial Training. For adding a VAT criterion to our model, we closely fol-
lowed the VAT criterion in VADA [14]. We used a radius of 3.5 for adversarial perturbations
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and a coefficient of 0.01 for the VAT criterion, which is the KL divergence between the
outputs of the perturbed and the unperturbed input from the target domain.
Empirical Bhattacharyya Distance Estimate. We use this estimate to compare target do-
main inter-class separation in Table 5 of the main paper. For computing an approximation,
we made the assumption that features for each class in the target domain are distributed as
gaussians with identity covariance and used the closed form Bhattacharyya Distance (BD)
between two multivariate gaussians [18]. The estimate then reduces to:

BD =
1(K
2

) ∑
i, j∈[K]

i6= j

1
8

∣∣∣∣µi−µ j
∣∣∣∣2

2

where µi is the mean of class i features of images in the target domain (Dt ∪Du).
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