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Grounded Situation Recognition
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This supplementary material provides more details of our model, further analyses on it,
additional ablation studies and experimental results, which are left out from the main paper
due to the space limit. Section A describes the transformer architecture of GSRTR in de-
tail, Section B performs the ablation studies on GSRTR, Section C provides more qualitative
examples of the total prediction of GSRTR, and a more thorough qualitative analysis on at-
tention of GSRTR is illustrated in Section D. Finally, the practical applications of Grounded
Situation Recognition are described in Section E.

A Detailed Transformer Architecture
Transformer Encoder-Decoder: The detailed transformer architecture of GSRTR is given
in Figure A1. The encoder takes as input a verb token and flattened image features, and
then produces a verb feature and image features. Along with image features given by the
encoder, the decoder takes as input semantic role queries, and then produces output features
corresponding to the semantic roles. The encoder is a stack of six encoder layers and the
decoder is a stack of six decoder layers. Each encoder layer consists of a Multi-Head Self-
Attention (MHSA) block and a Feed-Forward Network (FFN) block. Each decoder layer
consists of a MHSA block, a Multi-Head Attention (MHA) block, and a FFN block. We use
Pre-Layer Normalization (Pre-LN) [3], i.e., LayerNorm is used before each MHSA block,
MHA block, and FFN block, and also before the verb feature and before the decoder output
features corresponding to the semantic roles. The skip connection, using 0.15 dropout rate,
is given by:

x+Dropout(Block(LayerNorm(x))) , (A.1)

where x ∈ Rd and Block denotes one of the MHSA block, MHA block, and FFN block.
Note that we use d = 512. The FFN block is 2 fully-connected layers with ReLU activation
function and 2048 hidden dimensions, using 0.15 dropout rate, and it is given by:

FFN(x) =W2 (Dropout(max(W1x+b1,0)))+b2, (A.2)

where x ∈ Rd , W1 ∈ R2048×d , b1 ∈ R2048, W2 ∈ Rd×2048, and b2 ∈ Rd . We use Xavier
initialization [1] for the learnable parameters in the encoder and decoder.

Multi-Head Attention: MHA takes as input a query sequence XQ ∈ Rd×nQ and a key-value
sequence XKV ∈ Rd×nKV , where nQ denotes the query sequence length and nKV denotes the
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Figure A1: The detailed transformer architecture of GSRTR. A verb token and flattened
image features are used for the first encoder layer input (black line in Encoder). Zero input
is used for the first decoder layer input (black line in Decoder). Positional encodings are
added to the keys and queries of the MHSA block in each encoder layer and the keys of the
MHA block in each decoder layer (red line). Semantic role queries are added to the keys and
queries of the MHSA block in each decoder layer and the queries of the MHA block in each
decoder layer (blue line). We omit Dropout in this diagram.

key-value sequence length. MHSA corresponds to the case when the query sequence is same
with the key-value sequence in MHA, i.e., when XQ = XKV in MHA. MHA is formulated as:

MHA(XQ,XKV ) =WO
[
Head1 (XQ,XKV ) ; · · · ;HeadH (XQ,XKV )

]
, (A.3)

where H is the number of heads, [; ] denotes a concatenation and WO ∈ Rd×d denotes an
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output projection. Note that we use H = 8. Headm denotes each attention function with
linear projections for m = 1, · · · ,H, and it is given by:

Headm(XQ,XKV ) = Attn
(
W m

Q XQ,W m
K XKV ,W m

V XKV
)
, (A.4)

where W m
Q ,W m

K ,W m
V ∈ Rd′×d denotes linear projection of mth head for key, query, and value,

respectively. The linear projection matrices are learnable parameters, which are not shared
across the MHA and MHSA blocks in the encoder and decoder layers. Note that we use
d′= 64, where d′= d

H . Attn denotes an attention function which transforms a query sequence
Q ∈ Rd′×nQ into an output sequence, whose element is a weighted sum of a value sequence
V ∈ Rd′×nKV . For ith query qi ∈ Rd′ , each weight of the sum is computed by a softmax
function (i.e., Softmax) after a scaled dot-product between the ith query qi and a key sequence
K ∈ Rd′×nKV . In other words, the ith element of the attention function output from the query
sequence Q, key sequence K, and value sequence V is given by:

Attni(Q,K,V ) = ∑
j

Softmax j

(
1√
d′

qiK
)

v j, (A.5)

where Softmax j denotes the jth output of the softmax function and v j ∈ Rd′ denotes the jth

value.

The MHSA block in the encoder: The encoder takes as input a verb token and flattened
image features. The positional encodings P ∈ Rd×hw are used, where hw denotes the length
of flattened image features. The positional encodings P are 2D learnable embeddings, and
they are used at the attention function of each MHSA block in the encoder. To be specific,
the positional encodings are added to the corresponding image features, which are used as
the key and query inputs at the attention function. For the verb token, we append zero to
the positional encodings, leading to P′ ∈ Rd×(1+hw). As a result, the positional encodings P′

are added to the key and query inputs of the attention function in each MHSA block of the
encoder. Thus, the mth attention function in each MHSA block of the encoder is given by:

Headm(XQ,XKV ) = Attn
(
W m

Q
(
XQ +P′

)
,W m

K
(
XKV +P′

)
,W m

V XKV
)
, (A.6)

where XQ = XKV and XQ ∈ Rd×(1+hw).

The MHSA and MHA blocks in the decoder: Along with the image features given by the
encoder, the decoder takes as input a sequence of the semantic role queries. Additionally
to Section 3.3, each semantic role query w(v,r) per semantic role r ∈ Rv can formulate a se-
quence with arbitrary role orders, leading to the semantic role query sequence Sv ∈ Rd×|Rv|.
Note that the initial decoder input is set to zero. In each MHSA block of the decoder, the se-
mantic role query sequence Sv is added to the query and key inputs of the attention function.
In other words, the mth attention function in each MHSA block of the decoder is given by:

Headm (XQ,XKV ) = Attn
(
W m

Q (XQ +Sv) ,W m
K (XKV +Sv),W m

V XKV
)
, (A.7)

where XQ = XKV and XQ ∈ Rd×|Rv|. In each MHA block of the decoder, the semantic role
query sequence Sv are added to the query inputs of the attention function, and positional
encodings P are added to the key inputs of the attention function. In other words, the mth

attention function in each MHA block of the decoder is given by:

Headm (XQ,XKV ) = Attn
(
W m

Q (XQ +Sv) ,W m
K (XKV +P) ,W m

V XKV
)
, (A.8)

where XQ ∈ Rd×|Rv| and XKV ∈ Rd×hw.
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Table B1: Ablation studies on our model (GSRTR).
top-1 predicted verb top-5 predicted verbs ground-truth verb

grnd grnd grnd grnd grnd grnd
set model verb value value-all value value-all verb value value-all value value-all value value-all value value-all

dev

GSRTR w/ 4 layers 40.26 31.88 19.20 25.44 10.20 69.34 53.52 30.33 42.29 15.69 74.09 38.88 57.97 19.75
GSRTR w/ 8 layers 40.49 32.10 19.46 25.69 10.39 69.11 53.34 30.62 42.35 15.88 74.07 39.12 58.27 19.92
GSRTR w/ Post-LN 40.18 31.50 18.54 25.20 9.89 68.82 52.72 29.30 41.79 15.27 73.30 37.60 57.50 19.34
GSRTR 41.06 32.52 19.63 26.04 10.44 69.46 53.69 30.66 42.61 15.98 74.27 39.24 58.33 20.19

test

GSRTR w/ 4 layers 40.87 32.21 19.13 25.35 9.83 69.87 53.78 30.25 41.97 15.22 73.89 38.42 57.00 18.88
GSRTR w/ 8 layers 40.83 32.20 19.17 25.49 10.03 69.47 53.40 30.07 41.99 15.35 73.75 38.54 57.20 19.19
GSRTR w/ Post-LN 40.31 31.72 18.69 25.03 9.56 69.86 53.57 29.89 41.99 15.14 73.33 37.76 56.70 18.78
GSRTR 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 57.45 19.67

B Ablation Studies

We study the effect on the number of layers and the location of LayerNorm in GSRTR. Our
experiments are evaluated on the dev and test splits of SWiG dataset [2], and the results are
compared with the proposed model and setting in Section 4.2.

The effect on the number of layers in the encoder and decoder is shown at the first and
second row of each set in Table B1. GSRTR w/ 4 layers denotes that each of the transformer
encoder and decoder has four layers, and GSRTR w/ 8 layers denotes that each has eight
layers. In ground-truth verb setting, the noun and grounded noun accuracies of both models
decrease. The top-1 predicted verb and top-5 predicted verbs accuracies of both models
marginally fluctuate.

The effect on the location of LayerNorm in GSRTR is shown at the third row of each
set in Table B1. GSRTR w/ Post-LN denotes that LayerNorm is placed between skip con-
nections, leading to Post-Layer Normalization (Post-LN) [3] transformer architecture. In all
evaluation metrics of each set, the accuracies of GSRTR w/ Post-LN decrease.

C More Qualitative Results of Our Model

In top-1 predicted verb setting on the test split of the SWiG dataset, the prediction results of
GSRTR are shown in Figure C2, Figure C3 and Figure C4. The SWiG dataset has three noun
annotations for each semantic role. The noun prediction is considered correct if the predicted
noun matches one of the three noun annotations. The box prediction is considered correct
if the model correctly predicts box existence and the predicted box has an Intersection-over-
Union (IoU) value of at least 0.5 with the ground-truth box. Note that the grounded noun
prediction is considered correct if the predicted noun and predicted box are correct.

Figure C2 shows the correct grounded noun prediction results. Figure C3 shows the
failure cases of box prediction. There are incorrect box predictions when bounding boxes
have extreme aspect ratios (e.g., the boxes of the role Tool in the Surfing and the Coloring
image), or small scales (e.g., the box of the role Agent in the Mowing image and the box of
the role Tool in the Helping image). Figure C4 shows the failure cases of noun prediction,
including incorrect box predictions. Even in the failure cases, there are the cases where
GSRTR reasonably predicts nouns. For example, in the Tilting image, GSRTR predicts that
the noun of the role Place is Outdoors, which is similar to the first annotation Outside. In
the Curling image, GSRTR predicts that the nouns of the role Agent and Place are Person
and /0, which are enough to describe the given image. There is also the case where GSRTR
inappropriately predicts nouns. In the Chasing image, GSRTR predicts that the noun of the
role Chasee is Zebra, whereas the three noun annotations are Bull, Calf, and Cow.
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Figure C2: Correct grounded noun predictions of GSRTR in top-1 predicted verb setting on
the test set. For each semantic role, three annotators record noun annotations.

Figure C3: Incorrect box predictions of GSRTR in top-1 predicted verb setting on the test
set. The dashed box denotes incorrect box prediction.
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Figure C4: Incorrect noun predictions of GSRTR in top-1 predicted verb setting on the test
set. The incorrect noun predictions are highlighted in red color. The dashed box denotes
incorrect box prediction.

Figure D5: Role Attention Map on Image Features for a Decorating image from the MHA
block in each decoder layer.
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D Qualitative Analysis on Attention
Role Attention Map on Image Features: In Figure D5, Figure D6 and Figure D7, each
column shows the difference of attention maps among roles. Each row shows the transition
of attention maps through the decoder layers. In Figure D5, the role Decorated focuses on
the decorated stuff and the role Item focuses on the decoration item. Figure D6 shows that
GSRTR can understand the given image and distinguish between the role agent and the role
victim. Figure D6 and Figure D7 show that GSRTR can figure out the background for the
role Place in the given image.

Figure D6: Role Attention Map on Image Features for a Apprehending image from the
MHA block in each decoder layer.

Figure D7: Role Attention Map on Image Features for a Smelling image from the MHA
block in each decoder layer.
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Visualization of Role Relations: GSRTR captures the relations among roles in the similar
way if the situations of the given images are similar. In Figure D8, the role Vehicle focuses
on the role Place, i.e., the runway (Place) and the railway station (Place) are highly related
to the airplane (Vehicle) and the train (Vehicle) given the verb Boarding, respectively. In
Figure D9, the role Obstacle and the role Tool focus on the role Place, i.e., the cliff (Place)
is highly related to the rock (Obstacle) and the rope (Tool) given the verb Climbing.

Figure D8: Visualization on Role Relations for two Boarding images from the MHSA block
in the last decoder layer. Attention scores are represented as column-wise sum to 1.

Figure D9: Visualization on Role Relations for two Climbing images from the MHSA block
in the last decoder layer. Attention scores are represented as column-wise sum to 1.

Figure D10: Verb Token Attention Map on Image Features for three Biting images. Each
row consists of an image and attention maps from the MHSA block in each encoder layer.
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Verb Token Attention Map on Image Features: GSRTR can capture the key feature to
infer the salient action. Figure D10 and Figure D11 show that GSRTR focuses on the bit-
ten part and the falling agent, respectively. The rightmost column shows that the semantic
regions where the verb token focuses on are similar for the same verb. Each row shows the
transition of attention maps through the encoder layers.

Figure D11: Verb Token Attention Map on Image Features for three Falling images. Each
row consists of an image and attention maps from the MHSA block in each encoder layer.

E Applications

We present practical applications of Grounded Situation Recognition.

Figure E12: Grounded-Semantic-Aware Image Retrieval results on the dev set. The re-
trieval results have similar semantics and object arrangements with the query image. In this
retrieval, the similarity between two images is computed by the results of verb prediction
and grounded noun prediction as in [2].
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There have been many studies in image retrieval by computing the similarities between the
visual representations of images. But, they do not work well for getting the retrieval results
which have similar situations with respect to semantics or object arrangements. Grounded-
Semantic-Aware Image Retrieval enables image retrieval in the aspects of main activity and
key objects with their arrangements, as shown in Figure E12. This retrieval uses the re-
sults of verb prediction and grounded noun prediction instead of visual representations. The
predictions of main activity (verb) and entities (nouns) enable image retrieval for similar
semantics, and the predictions of entity locations enable image retrieval for similar object ar-
rangements. In this retrieval, we compute the GrSitSim(I,J) [2] as similarity score function
between image I and J. For an image I, we compute the top-5 verb predictions v̂I

1, ..., v̂I
5. For

each verb prediction v̂I
i , we predict nouns n̂I

i,1, ..., n̂I
i,|Rv̂I

i
| and bounding boxes b̂I

i,1, ..., b̂I
i,|Rv̂I

i
|.

Note that we ignore the predicted bounding box if its existence probability is less than 0.5.
We calculate the similarity between two images I and J as follows:

GrSitSim(I,J)

= max


1[v̂I

i=v̂J
j ]

2 · i · j · |Rv̂I
i
|

|Rv̂I
i
|

∑
k=1

1[n̂I
i,k=n̂J

j,k]
·
(

1+ IoU(b̂I
i,k, b̂

J
j,k)
)∣∣∣∣∣1≤ i, j ≤ 5

 . (E.9)

GrSitSim(I,J) is computed by the results of verb prediction and grounded noun prediction
for image I and J. The similarity is not zero when at least one verb is shared in the top-5
verb predictions for image I and J. The similarity is maximized when the top-1 verb predic-
tions and noun predictions of two images are same, and the sizes and locations of predicted
bounding boxes are same. For this reason, we can get the retrieval result which has similar
semantics and object arrangements in Grounded-Semantic-Aware Image Retrieval. Thus, we
can apply this image retrieval to the applications where semantics and object arrangements
are important, e.g., search engine using semantics and object arrangements of images.

Grounded Situation Recognition models produce complete predictions with respect to
the semantic roles corresponding to a verb. Thus, the models can answer the following
questions more strictly, “What is the main activity” (verb), “Who is participating in the main
activity” (role Agent), “What does the actor use in the main activity” (role Tool), “Where is
the actor in the image” (entity location of role Agent), etc. For this reason, the models are
useful for predetermined questions on situations. Taking advantages of these properties, we
can apply the models for industry such as unmanned surveillance system or service robot.
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