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1 Quality measures
As mentioned in the main document, we tackle a multi-objective task, hence, requires mul-
tiple quality measures for expressing the performance of individual sub-tasks. The details of
the quality measures used in our work is provided in the following.

Ball Detection Quality (bDQ). As in the BallSeg framework [6], given a threshold τ in
the dynamic range of the confidence scores, a predicted ball keypoint is identified as a True
Positive (TP) (or False Positive (FP)) detection , if its location lies inside (respectively, out-
side) the ground truth mask and its predicted confidence is greater than τ: for the predicted
ball oball,

oball ∈ TPball(τ)⇔ oball ∈ Iball∗, S̃(ball,oball)≥ τ

oball ∈ FPball(τ)⇔ oball 6∈ Iball∗, S̃(ball,oball)≥ τ (1)

where Iball∗ denotes the semantic mask of the ball. By repeating this procedure for all
images, we obtain the TP and FP sets associated with the full set of images. The TP rate
(TPr) and FP rate (FPr) ratios are defined as

TPr(τ) :=
|TPball(τ)|

|{images with annotated ball}|
, FPr(τ) :=

|FPball(τ)|
|{all images}|

.

The bDQ is then computed as the area under the ROC curve associated with the TPr and
FPr.
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Player Segmentation Quality (pSQ). Compared with the bDQ, a predicted player mask
is identified as a TP mask (otherwise, an FP), if its IoU with one of the ground truth player
masks is higher than the threshold of 0.5:

(Iply
i ,Iply∗

j ) ∈ TPply⇔∃ j, IoU(Iply
i ,Iply∗

j )≥ 0.5. (2)

The pSQ is then defined as the averaged IoU over the TP pairs:

pSQ :=
1

|TPply| ∑
(u,v)∈TPply

IoU(u,v). (3)

Player Detection Quality (pDQ). Having identified the TP set as in (2), the pDQ is then
defined as the F1-score:

pDQ :=
2|TPply|

Nply +N∗ply
. (4)

Note that the pSQ (3) and pDQ (4) criteria are the segmentation and recognition quality
components of the Panoptic Quality (PQ) measure introduced in [2], i.e., concretely, the PQ
for player segmentation reads PQ := pSQ ·pDQ.

Pose Estimation Quality (pEQ). For pose estimation task we use the OKS criteria, i.e.,
for every pair of the predicted pose ϒi and ground truth pose ϒ

∗
j , it is defined as

OKS(ϒi,ϒ
∗
j) := meank exp(−

‖ok
i −ok∗

j ‖2
2

2s2
jκ

2
k

), (5)

where the mean is taken over the annotated body part keypoints, s denotes the square root of
the area of the bounding-box tightly containing all the body parts, and κk is the per-keypoint-
type scale constant controlling falloff. The predicted skeletons are then sorted according to
their confidence scores defined as the average over the body part confidence scores: from the
pixel-wise confidence map in (Eq. 2 in the main document)

ϒ
conf
i =

1
17 ∑

k∈Kpart

S̃(k;ok
i ). (6)

Next, the ordered predictions are assigned to the ground truths, with which they have
the highest OKS value. Once the matching is complete, the set of TP skeletons TPskl(τ)
with respect to the OKS threshold τ is determined. Concretely, for a fixed OKS threshold τ

(ranging from 0.5 to 0.95), a pair of predicted and ground truth skeletons is identified as a TP,
if their OKS is higher than τ . The Precision (Pr) and Recall (Re) values are then computed
as

Pr(τ) :=
|TPskl(τ)|

Nply
, Re(τ) :=

|TPskl(τ)|
N∗ply

. (7)

Finally, the Average Precision (AP) and Average Recall (AR) values read, respectively,

AP := meanτ Pr(τ), AR := meanτ Re(τ). (8)
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Remark 1 The quality metrics above are defined per-image; however, in practice, we com-
pute the bDQ, pSQ (3), pDQ (4), and AP and AR (8) over all the images in the validation or
test sets.

Remark 2 As required for computing pEQ, the values of κk associated with the body parts
are set according to the convention of DeepSport dataset, i.e., κhead = 0.15, κhip = 0.2, and
κfoot 1 = κfoot 2 = 0.2.

2 Ablation studies

2.1 Decoding with Oracle Data
The importance of the accuracy of each output for the decoding process can be obtained by
using the oracle data instead of their corresponding network outputs. This study is helpful
to find out whether the error propagates from one block to the other. Table 1 compares the
metrics when different permutations of oracle data were used on DeepSport dataset. The first
message drawn from this study is that our player segmentation is good enough to associate
the PIF keypoints because the increase of F1 Score is only by 0.5% when using all of the
oracle data compared to when using none. Thus, for further improve the pose estimation
task, the PIF keypoints should be trained better.

player offset semantic PQ pSQ pDQ pEQ
centroid vectors masks AP AR F1

– – – 72.3 80.3 90.1 87.5 82.1 42.4
X – – 71.4 79.7 89.6 87.2 82.7 42.5
– X – 75.7 82.9 91.3 87 81.8 42.2
– – X 86.7 94.5 91.7 87.2 82.5 42.4
X X – 77 83 92.8 86.2 82.3 42.1
X – X 87 94.5 92.1 87.7 83.7 42.8
– X X 93.5 98.3 95.1 88 82.7 42.6
X X X 100 100 100 87.7 83.8 42.9

Table 1: DeepSportLab Decoding with oracle data. Note that PQ := pSQ ·pDQ.

2.2 Keypoints Error Breakdown
Further improvements can be achieved once we know the source of error. Ronchini and Per-
ona [5] break the estimated body keypoints in 5 different categories based on their calculated
KS, i.e. keypoint similarity between the keypoint o of a detection ϒ and o∗ of an annotation
ϒ
∗. KS is calculated using (5) without the mean over all keypoints. If KS of o and o∗ is

higher than 0.85, this prediction is considered Good. Jitter happens when KS drops between
0.5 and 0.85. In case that KS is less than 0.5, o can be either a Miss, Swap, or Inversion.
In our case, since we switch the right and left feet in case of wrong detection, the Inversion
will never occur. This is because foot 1 and foot 2 labels are interchangeable in DeepSport
dataset (See Section 4 in the main document). Next, Swap happens when o is wrongly asso-
ciated to another skeleton. Miss happens when o is predicted, but not in the right location,
and it was not a Swap. Finally, FN KP happens when the keypoint is not detected at all. Fig.
1 shows the examples for each of these categories. Fig. 2 depicts the error breakdown based
on the error category and type of keypoint.
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(a) Good (b) Jitter (c) Swap

(d) Miss (e) FN KP
Figure 1: Error samples. Green and red dots show the annotated and predicted keypoints, respectively. Yellow
and Red circles resemble the borders from which the KS will be less than 0.85 and 0.5, respectively. In (c), the red
arrow points toward the wrongly predicted foot where the swap occurs.
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Figure 2: Error breakdown. Pie charts on the left show the distribution of keypoints in 5 categories based on their
KS. Pie charts on the right show the distribution of each type of error based on the keypoints type.
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2.3 Evaluation on COCO dataset
As stated in the main text, our main contribution is to come up with a multi-task framework
specific to sports scenes. However, as an ablation study, the model was also evaluated on
COCO dataset [4] which is very much diverse in terms of both the scenery and the size of
people in images. Table 2 shows metrics evaluated on COCO’s validation set. Note that in
this experiment, only the keypoints visible in the image are considered for the evaluation.

DeepSportLab decoder is studied in three different cases: (1) When using the network
outputs, (2) When using oracle centroid of humans, and (3) When using the full human mask
oracle. In the first case, due to the diversity of people size in COCO images, the segmentation
task falls short in terms of pDQ which leads to error in pEQ. When adding the oracle center,
the PQ increases significantly, suggesting that the center needs more training. When using
the oracle masks, (i.e. PQ = 100), pEQ increases by 45.3% and 34.2% in terms of AP and AR,
respectively. This shows the importance of the segmentation masks on big and challenging
datasets such as COCO. It is worth mentioning that training in this case needs a lot of hyper-
parameter tuning and optimization. Our computational resources certainly did not allow to
fully explore the parameter space. Obtaining more competitive results on COCO dataset is
seen as a future work for this framework.

Method PQ pSQ pDQ pEQ
AP AR F1

DeepSportLab 34.3 75.3 45.5 43.7 44.2 22
DeepSportLab - oracle center 52.1 78.1 66.7 57.1 60.7 29.4
DeepSportLab - oracle segmentation 100 100 100 63.5 67.2 32.6
OpenPifPaf [3] – – – 66.9 70.9 45.4
Pan.-DeepLab [1] 48.4 78.6 61.5 – – –

Table 2: Comparison of different methods evaluated on COCO’s validation set. Three different cases are
considered for DeepSportLab: (1) Decoding with network’s outputs, (2) Decoding with oracle centers, and (3)
Decoding with oracle segmentation masks.
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