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1 Rotation Invariance of Gaussian

Denote R € R**3 as a rotation matrix in 3D Euclidean space. When a point cloud P =
{xi|li <N} is rotated by R, we have the rotated point cloud P’ = {x] = Rx|i < N}. The mean
vector and covariance matrix of the Gaussian distribution can be estimated from the first and
second order moments:
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We can obtain the mean vector g’ and the covariance matrix ¥’ of the rotated Gaussian by
substituting x; with x} = Rx; in Eq. (1):
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We have the fact that the first and second order momentums of Gaussian distribution are
rotation equivariant. Knowing this, it is easy to find that:
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which indicates the rotation invariance of Gaussian.
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2 An EM perspective

The solution process of a GMM can be concluded as an EM (Expectation-Maximization)
procedure. In the expectation step, the posterior distribution of the latent variables ¥ is
updated by the guessed parameters:
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Then the parameters of the GMM can be estimated by maximizing the likelihood under the
expectation of posterior distributions of latent variables.
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where Ny = YV | .
From the EM procedure, we can find that:

1. In the M-step, when % is fixed, the mean vector L and covariance matrix X; are
equivariant to rotation according to Eq. (1) and Eq. (2). And the mixture coefficient
7, is independent of rotation.

2. Inthe E-step, ¥; remains the same as that before rotation with the estimated parameters
{7, W, X[k < K} in the M-step according to Eq. (3).

That is to say, with proper initialization, the GMM is rotation equivariant in the EM pro-
cedure. In other words, if ® = {m, 1, Lx|k < K} is a solution of a GMM p(x), we can
find a solution ®’ = {7, Ry, R R |k < K} for the GMM p(Rx) after rotating the random
variables by R. In practice, the likelihood function of the GMM may be multimodal, thus
we cannot guarantee the parameters always convergent to the global minimal across differ-
ent views (with different initializations) in optimization. Nevertheless, we can say that the
GMM is potentially invariant to rotation at least.

Actually, the EM solution also provides us an alternative GMM implementation different
with our mixture density network. To be specific, we can let the network learn a posterior
for each input point, which can be easily implemented with a softmax layer in the network:
7: = Softmax(x;) € RX. Then the parameters of the GMM can be estimated according to
Eq. (5) in one iteration without additional likelihood loss. And the rotation invariance can
be also ensured in this way. In this formulation, the leaning of the GMM turns to the learn-
ing of the posteriors of latent variables. However, we find this strategy will cause unstable
training. Because there exist two successive exponential operations in this implementation
(one in the softmax layer for computing ¥ and another in the Gaussian function), which will
causes gradients explosion. Besides, this implementation requires higher space complexity
to store the posteriors for each neighbor point. We may address this problem in future work.
Anyway, the mixture density network used in this paper is more efficient and can avoid such
limitations.
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3 Implementation Details

3.1 Network Architectures

Inspired by ResNet[4], we use a residual bottleneck structure for the AGMMConv layer.
The convolution layer is illustrated in Figure 1. A BN (Batch Normalization) layer with a
momentum of 0.98 is added after each convolution layer. And the LeakyReLU layer with a

negative slope of 0.1 is used as an activation layer.

Figure 1: Residual bottleneck AGMMConv layer used in this paper. Note that the pooling
layer and convolution layer in the residual path are used to align the cloud resolution and
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feature dimension if necessary.

Table 1: Details of network architectures used in this paper.

modules blocks layers
conv 1 AGMMConv(in_dims=F,, out_dims=32, num_kernels=8, ratio=1.0)
AGMMConv(in_dims=32, out_dims=32, num_kernels=_8, ratio=1.0)
cony 2 AGMMConv(in_dims=32, out_dims=64, num_kernels=8, ratio=r;)
AGMMConv(in_dims=64, out_dims=64, num_kernels=_8, ratio=1.0)
encoder conv_3 AGMMConv(in_dims=64, out_dims=128, num_kernels=8, ratio=r,)
AGMMConv(in_dims=128, out_dims=128, num_kernels=8, ratio=1.0)
conv 4 AGMMConv(in_dims=128, out_dims=256, num_kernels=8, ratio=r3)
AGMMConv(in_dims=256, out_dims=256, num_kernels=8, ratio=1.0)
conv 5 AGMMConv(in_dims=256, out_dims=512, num_kernels=8, ratio=ry)
AGMMConv(in_dims=512, out_dims=512, num_kernels=8, ratio=1.0)
deconv_4 AGMMConv(in_dims=512, out_dims=256, num_kernels=8, ratio=1 / ry)
decoder deconv_3 AGMMConv(in_dims=256+256, out_dims=128, num_kernels=8, ratio=1/r3)
deconv_2 AGMMConv(in_dims=128+128, out_dims=64, num_kernels=8, ratio=1/r»)
deconv_1 AGMMConv(in_dims=64+64, out_dims=32, num_kernels=8, ratio=1/r;)
classification segmentation
fc_1 Linear(in_dims=512, out_dims=1024) Linear(in_dims=512, out_dims=256)
classifiers activation LeakyReLU(negative_slope=0.1) LeakyReLU(negative_slope=0.1)
dropout Dropout(p=0.5) None
fc_ 2 Linear(in_dims=1024, out_dims=C) Linear(in_dims=256, out_dims=C)
normalize Softmax() Softmax()/Normalize()
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We devise two network architectures with the proposed AGMMConv for different tasks.
The encoder network is used for object-level classification task. And the encoder-decoder
network is used for object-level normal estimation and scene segmentation tasks. The en-
coder is stacked with five convolution blocks, each of which consists of two successive AG-
MMConv layers. The feature dimensions are increased after each convolution block. They
are set to [32, 64, 128, 256, 512] in the five convolution blocks, respectively. Meanwhile,
the spatial resolutions of the point cloud are decreased by sampling with a ratio of r. Specifi-
cally, We employ FPS (Farthest Point Sampling) for the object-level tasks and grid sampling
for scene-level tasks. We adopt the same encoder for the two network architectures. The
decoding part of the encoder-decoder network contains five corresponding transposed AG-
MMConv layers to restore the cloud resolution gradually. Two full connected layers are used
as the classifier in the network. A drop out layer with the probability of 0.5 is added after
the first fully connected layer for classification tasks. For the normal estimation task, we re-
place the softmax layer with a normalization layer to regress per-point normals. The detailed
network architectures are shown in Table 1.

3.2 Precomputed Multiscale Strategy

Our GMMConv is flexible and scalability to various sampling and neighbors grouping strat-
egy. In KPConv, the authors employ a grid sampling strategy to ensure a fixed spatial resolu-
tion at each layer, which allows they to choose appropriate hyperparameters with respect to
the grid size of each layer, such as the radius and influence range. Unlike the KPConv, our
GMMConv learn an adaptive representation for the convolution kernel points can thus avoid
such limitations. In point cloud learning, the data organization, such as sampling and neigh-
bor grouping, costs lots of computations, which hinders the algorithm from generalizing to
large-scale scenes. Inspired by RandLA-Net[5], we use a precomputed multiscale strategy
to get a multiscale representation for the point cloud. We use kNN to search the neighbors
of each point (we use k=16 in our experiments). The kNN searching can be efficiently com-
puted on CPU using KDTree. To reduce the spatial resolution, we apply different strategies
for various tasks. Considering computation efficiency, we employ FPS for object-level tasks
and grid sampling for scene-level tasks. The multiscale point clouds and neighbor indexes
are stored beforehand in the form of a sparse multiscale batch, which will be viewed as a
whole to feed the network. The sparse batch representation also makes the network support
various input point cloud size. Owing to the precomputed multiscale strategy, our network
can handle a million points in a single pass, which is helpful for learning large-scale outdoor
point clouds.

3.3 Training Approach

The momentum SGD method is used to minimize the total loss with the momentum of 0.98
and weight decay of le-4. The total loss is the linear combination of the task loss and the
likelihood loss, in which the likelihood loss is regarded as a regularizer to the network and
weighted by a weight factor A = le —4. We apply a decay learning rate strategy in training.
For the object-level tasks, the learning rate is set to le-3 and multiplied by 0.1 every 100
epochs. The network converges in 200 epochs. We training 50K iterations for the scene-
level tasks, the initial learning rate is set to le-2 and multiplied by 0.1 every 25K iterations.
Neither pretraining nor additional data is used in training.
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4 More Experimental Results

4.1 Datasets

ModelNet[21] is a synthetic dataset for 3D objects classification, which contains 12,311
meshed CAD models from 40 categories. This dataset compiled a list of the most common
object categories in the world, using the statistics obtained from the SUN database. The
full version contains 40 classes, and 10 popular object categories are further chosen as a 10-
class subset. The data is original represented with triangle faces. In the experiment, we first
sample the point cloud with the grid size of 0.02 from the original face. Then we uniformly
sample a fix number of points (1,024) to feed the network. The coordinate is used as the
input feature for each point.

S3DIS[1] is a large-scale indoor 3D scenes segmentation dataset, which is collected on six
large-scale indoor areas from 3 different buildings. The scene is annotated with 13 categories
(including clutter). Following [10], we split the dataset by rooms (271 rooms in total). Each
point is represented as a 6D vector including the coordinate in 3D Euclidean space and the
corresponding RGB color. In our experiments, the training and test sets are split according
to areas. That is, five of the six areas are selected as a training set and the remaining one is
used for test.

Semantic3D[3] is a large-scale outdoor point cloud segmentation benchmark. The data is
acquired by a 3D Velodyne LiDAR. Each point is also colorized in a postprocessing step
by deploying a high resolution cubemap, which is generated from the corresponding camera
images. This benchmark provides a large labeled 3D point cloud data set of natural scenes
with over 4 billion points in total, which covers a range of diverse urban scenes. We conduct
our experiments on the reduced-8 benchmark that contains 15 scenes for training and 4
reduced scenes for test with 8 semantic categories. Because the test set has been uniformly
downsampled with the resolution of 0.01m. In the preprocessing, we also downsample the
training set to maintain the same resolution as the reduced test set.

4.2 Normal Estimation

The groundtruth normals are originally computed from the triangle meshes. We show some
visualization results compared with the groundtruth in Figure 3. It can be seen that the
predicted normals are more reasonable in direction than the groundtruth in some cases.

4.3 Indoor Scenes Segmentation

The 6-fold cross validation results on the six areas of the S3DIS dataset are given in Table
2 in detail. And the 6-fold per-class IoUs compared with some current popular methods are
shown in Table 3. Because some previous methods only report the performance on Area 5,
we also give a comparison on this area in Table 4. Some visualization results on the S3DIS
dataset are illustrated in Figure 4.

4.4 Outdoor Scenes Segmentation

The per-class IoUs on the Semantic 3D dataset (reduced-8) compared with some current
popular methods are given in Table 5. The proposed method performs comparably with
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RandLA-Net and surpasses the other methods. Some visualization results on the validation
scenes are also shown in Figure 2.

Table 2: Cross validation results of the proposed method on the S3DIS dataset.

Areas OA mACC mloU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

1 89.2 863 755 963 957 788 612 61.5 823 837 699 814 735 643 647 680
2 855 724 60.7 90.8 964 828 27.1 60.6 754 715 628 424 662 50.5 158 46.6
3 92.0 90.1 80.2 955 983 839 647 343 874 888 732 863 89.1 774 867 764
4 88.8  82.1 68.0 954 979 824 434 708 476 702 624 81.8 609 63.1 439 64.1
5
6

894 747 668 937 977 834 00 357 613 663 80.7 832 67.6 743 614 585
925 924 817 965 97.7 8.5 819 764 827 86.1 781 86.8 719 741 721 726

6-fold 89.3 828 723 943 972 827 60.8 57.6 68.6 757 735 689 707 689 592 614

Table 3: Performance of the proposed method on the S3DIS dataset (6-fold).
Methods OA mACC mloU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet[10] 78.6 662 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 294 352
PointCNN[8] 88.1 75.6 654 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 522 58.6
SPGraph[19] 86.4 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 459 8.7 529
DGCNNJ[20] 84.1 - 56.1 - - - - - - - - - - - -
DeepGCN[7] 859 - 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4
ShellNet[24] 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 649 529 71.6 84.7 53.8 64.6 48.6 59.4
PointWeb[25] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
SegGCN[6] 87.8 77.1 68.5 92.5 97.6 78.9 44.6 58.2 53.7 67.3 74.6 83.9 68.0 65.7 46.8 58.8
PointASNL[23] 88.8 79.0 68.7 95.3 97.9 81.9 47.0 48.0 67.3 70.5 71.3 77.8 50.7 60.4 63.0 62.8
RandLA-Net[5] 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 659 60.1

FPConv[9] - - 68.7 94.8 97.5 82.6 42.8 41.8 58.6 73.4 71.0 81.0 59.8 61.9 64.2 64.2
KPConv[16] - 791 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
PAConv[22] - 787 693 943 93.5 82.8 56.9 45.7 65.2 749 74.6 59.7 61.8 67.4 65.8 58.4

BCM+AFM[12] 889 83.1 722 93.3 96.8 81.6 61.9 49.5 654 73.3 72.0 83.7 67.5 64.3 67.0 62.4
Ours 89.3 828 72.3 943 97.2 82.7 60.8 57.6 68.6 75.7 73.5 68.9 70.7 68.9 59.2 614

Table 4: Performance of the proposed method on the S3DIS dataset (Area 5).
Methods OA mACC mloU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet[10] - 49.0 41.1 88.897369.8 0.1 39 463 10.8 52.6 589 403 59 264 33.2
PointNet++[11] - 63.5 573 91.3 96.9 787 0.0 16.0 54.9 31.2 74.6 83.5 493 67.2 542 459
PointCNN[8] 859 639 57.3 923982 794 0.0 17.6 22.8 62.1 744 80.6 31.7 66.7 62.1 56.7
SPGraph[19] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 489 61.6 84.7 754 69.8 52.6 2.1 522

SegCloud[14] - 574 489 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 759 40.9 584 13.0 41.6
GACNet[17] 87.8 - 629 923 98.3 81.9 0.0 204 59.1 409 78.5 85.8 61.7 70.8 74.7 52.8
ParamConv[18] - 67.0 583 923962 759 03 6.0 69.5 63.5 65.6 669 689 473 59.1 46.2

PointWeb[25] 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 469 69.3 649 52.5
SegGCN[6] 882 704 63.6 93.7 98.6 80.6 0.0 28.5 42.6 74.5 80.9 88.7 69.0 71.3 44.4 543
PointASNL[23] 87.7 68.5 62.6 943 984 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 564 52.1

FPConv[9] - - 62.8 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9
KPConv[16] - 728 67.1 928 97.3 824 0.0 239 58.0 69.0 81.5 91.0 754 75.3 66.7 58.9
PAConv[22] - 723 656 93.1 984 82.6 0.0 22.6 61.3 63.3 78.5 88.0 64.5 73.5 70.1 57.3

BCM+AFM[12] 889 73.1 654 929 979 823 0.0 23.1 65.5 649 78.5 87.5 61.4 70.7 68.7 57.2
Ours 894 747 66.8 93.7 97.7 83.4 0.0 35.7 61.3 66.3 80.7 838.2 67.6 743 61.4 585
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Table 5: Per-class IoU of the proposed method on the Semantic3D dataset (reduced-8).

Methods OA mloU man—made natur.al high. low. buildings hard scanning cars
terrain  terrain vegetation vegetation scape artefacts
SnapNet[2]  88.6 59.1 82.0 713 79.7 229 91.9 18.4 373 644
SegCloud[14] 88.1 61.3 83.9 66.0 86.0 40.5 91.9 30.9 275 643
RF_MSSF[15] 90.3 62.7 87.6 80.3 81.8 36.4 92.2 24.1 42.6  56.6
MSDVN][13] 88.4 65.3 83.0 67.2 83.8 36.7 92.4 31.3 500 782
SPGraph[19] 94.0 732 97.4 92.6 87.9 44.0 932 31.0 635 76.2
ShellNet[24] 932 69.3 96.3 90.4 83.9 41.0 94.2 34.7 439 702
GACNet[17] 919 70.8 86.4 71.7 88.5 60.6 94.2 37.3 435 778
RandLA-Net[5] 94.8 77.4 95.6 91.4 86.6 51.5 95.7 51.5 69.8 768
KPConv[16] 929 74.6 90.9 82.2 84.2 47.9 94.9 40.0 713 797
BCM+AFM[12] 943 753 96.3 93.7 87.7 48.1 94.6 43.8 582 795
Ours 95.0 76.1 97.7 93.9 83.9 50.0 95.8 49.8 529 848
bildstein_station3 s$g27_station2

RGB

Pred

GT

Figure 2: Validation results compared with the groundtruth on the Semantic3D dataset. Note
that, the "unkown" class is ignored for better visualizations.
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Pred-1 GT-1 Pred-2 GT-2

Figure 3: Normal estimation results compared with the groundtruth on the ModelNet 40
dataset.
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RGB Pred GT

Figure 4: Validation results compared with the groundtruth on the S3DIS dataset. Note that,
the "ceiling" and "wall" categories are manually removed in each room for better visualiza-
tions
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