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Abstract

This is the supplementary material for the BMVC submission "Learning Not to Re-
construct Anomalies". Section 1 describes the SmoothMixS function used to generate
patch based pseudo anomalies. Section 2 explains additional experimental details in-
cluding implementation settings, dataset used, additional qualitative results, equal error
rate results, discussion regarding pixel-level performance, and comparisons with GAN-
based pseudo anomaly generation, which were omitted from the main manuscript due to
limited space.

1 Details of Patching Techniques

In this section, we describe the patching technique function utilized in patch based pseudo
anomalies (Section 3.3.1 of manuscript) in more details.

To generate the i-th frame of pseudo anomaly XP
i of the input sequence, we combine an

arbitrary image IA from an intruding dataset and the i-th normal frame XN
i of the sequence

as follows:

XP
i = Gi ◦ IA +(1−Gi)◦XN

i , (1)

where ◦ is pixel-wise multiplication in the spatial dimension, Gi is mask for the i-th frame,
and IA is an arbitrary image taken from the intruding dataset and transformed to have the
same size as XN

i , i.e., C×H×W . The overall process can be seen in Fig. 1(a) with example
if SmoothMixS [8] is utilized. By default, we utilize SmoothMixS [8], however, we also
experiment with other techniques, such as CutMix, SmoothMixC, and MixUp-patch. Mask
Gi generated from each of the technique can be seen in Fig. 1(b). Details of each mask
generation are explained below:
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Figure 1: (a) The overall process of patch based pseudo anomaly generation using Smooth-
MixS. (b) Different types of mask generated from different patching techniques having the
same µx, µy, σw, and σh values.

1.1 SmoothMixS
The SmoothMixS [8] mask is generated by utilizing two one dimensional masks, i.e., width
and height dimensions. SmoothMixS mask in the width dimension is given as:

Gw
i =


max(0, m−(µx

i −(1+k) σw
2 )

k σw
2

) if m≤ µx
i − σw

2 ,

max(0,−m−(µx
i +(1+k) σw

2 )

k σw
2

) if m≥ µx
i +

σw

2 ,

1 otherwise,

(2)

where k is the smoothness hyperparameter, a higher value of which represents more slope
(set to 0.1). Furthermore, σw is the span of the mask in width dimension, µx

i is the center
x-coordinate of the patch in the i-th frame, and m represents the x-coordinate over the mask.
Similar calculation is also done for mask in height dimension Gh

i using µ
y
i (y-coordinate of

the center) and σh (span of the mask in height dimension):

Gh
i =


max(0, n−(µy

i −(1+k) σh
2 )

k σh
2

) if n≤ µ
y
i −

σh

2 ,

max(0,− n−(µy
i +(1+k) σh

2 )

k σh
2

) if n≥ µ
y
i +

σh

2 ,

1 otherwise,

(3)

where n represents the y-coordinate over the mask. Illustrations on Gw
i and Gh

i values can be
seen in Fig. 2.

The final mask to be used in Eq. (1) is then given as:

Gi = Gw
i ⊗Gh

i , (4)

where ⊗ is the outer product.

1.2 CutMix
The CutMix [34] mask is a rectangular shape mask with (µx,µy) as the center coordinate of
mask and (σw,σh) as the width and height of the mask.
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Figure 2: Illustrations of SmoothMixS [8] mask values (a) Gw
i (Eq. (2)) and (b) Gh

i (Eq. (3)).

1.3 SmoothMixC

The SmoothMixC [8] mask is generated using Gaussian distribution with (µx,µy) as the
mean and (σw,σh) as the standard deviation.

1.4 MixUp-patch

The MixUp-patch mask is a combination of MixUp [37] and CutMix [34]. MixUp mixes two
images with linear combination at pixel-level. However, to be consistent with the aforemen-
tioned patch based techniques, we utilize the patch shape of CutMix instead of overlapping
the whole image. Moreover, instead of mask with value of 1 used in the CutMix, the mask
in the MixUp-patch used in our experiments is set to the value of 0.5. Hence, the final patch
is a combination of the input frame and the patch from intruder dataset.

2 Experiments

In this section, we discuss experimental details, including implementation details, details
of each datasets, additional qualitative results, equal error rate results, regarding pixel-level
performance, and comparisons with GAN-based pseudo anomaly, which have been omitted
from the manuscript because of space limitation.

2.1 Implementation Details

For the autoencoder models used in our experiments, we adopt a generative architecture
recently proposed by Gong et al. [4] that takes a grayscale input sequence of size 16× 1×
256×256 and produces its reconstruction of the same size. All the 16 frames of the sequence
are used for computing the reconstruction loss during training, while only the 9th frame of
the sequence is considered for anomaly score calculations at test time. However, differently
from the original implementation in [4], we remove the memory network and utilize only
the autoencoder part. Furthermore, we normalize each input image to the range [−1,1], as
well as add a Tanh output layer to have the similar output range. Architectural details of the
autoencoder used in our experiments can be seen in Table 1. The training is carried out using
Adam optimizer [7] with a learning rate of 10−4 and the mini batch size is set to 4. The
implementation is done in PyTorch [16].
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Layer Output Channels Filter Size Stride Padding Negative Slope
E

nc
od

er

Conv3D 96 (3, 3, 3) (1, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 128 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
Conv3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2

D
ec

od
er

ConvTranspose3D 256 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 128 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 96 (3, 3, 3) (2, 2, 2) (1, 1, 1) -
BatchNorm3D - - - - -
LeakyReLU - - - - 0.2
ConvTranspose3D 1 (3, 3, 3) (1, 2, 2) (1, 1, 1) -
Tanh - - - - -

Table 1: Autoencoder architecture used in our work. Each number in the tuple represents
time, height, and width dimensions, respectively.

2.2 Datasets

The details of each dataset used in our experiments are as follows:
Ped2 [9]. This dataset consists of 16 training and 12 test videos. Pedestrians dominate
most of the normal frames, whereas anomalies include people riding bicycles, vehicles, or
skateboards.
Avenue [10]. This dataset contains 16 training and 21 test videos. Anomalies include bicy-
cles, people running, and people throwing stuff.
ShanghaiTech [11]. This is by far the largest one-class anomaly detection dataset. It consists
of 330 training and 107 test videos. The dataset is recorded at 13 different scenes and various
camera angles. In total, the test videos contain 130 anomalous events including running,
riding bicycle, and fighting.

2.3 Additional Qualitative Results

To investigate the score distribution performance, Fig. 3 shows the comparisons of anomaly
score distributions between the baseline and our models on the complete test split of Ped2
dataset. Training using pseudo anomalies increases the reconstruction error of the anomalous
regions hence improving the capability of AEs to discriminate anomaly scores between the
normal and anomalous frames resulting in a noticeable AUC performance improvement.
In addition to the qualitative visualizations in Fig. 4 of the manuscript, we also provide a
demonstration video (demonstration.mp4) along with this Supplementary document.
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Figure 3: Anomaly score distributions of normal and anomalous frames using a complete
test split of Ped2. The anomaly scores are divided into 20 equal bins. Compared to the
baseline (a), our models trained using patch based pseudo anomalies (b) and skip frame
based pseudo anomalies (c) show better separability between normal and abnormal scores,
resulting in a superior performance as evident from the improved AUC.

Method Ped2 [9]

N
on

de
ep

le
ar

ni
ng

MDT [12] 24
MPCCA [6] 30
MPCCA+SF [12] 36
IBC [3] 13
Bertini et al. [2] 30
Xu et al. [31] 21
Adam et al. [1] 42
Mehran et al. [13] 42
Reddy et al. [21] 20.0
Saligrama and Chen [29] 18
Xiao et al. [30] 10
Zaharescu and Wildes [35] 17
Li et al. [9] 18.5
iHOT [14] 8.59

Method Ped2 [9]
D

ee
p

le
ar

ni
ng

Sabokrou et al. [23] 12.6
AMDN [32, 33] 17
Sabokrou et al. [22] 19
Deep-Cascade [24] 8.2
Deep-Anomaly [25] 11
Ravanbakhsh et al. [20] 11
ALOCC [26] 13
Sabokrou et al. [28] 12.5
Abnormal GAN [18] 14
Plug-and-Play [19] 18
AVID [27] 14
Baseline 15.33
Ours: Patch based 11.73
Ours: Skip frame based 8.39

Table 2: EER comparisons with SOTA. The best and the second best performance of each
category are marked as bold and underlined, respectively.

2.4 Equal Error Rate

Besides AUC used in our manuscript, Equal Error Rate (EER) is also a metric to measure the
performance of anomaly detection system used in the literature, especially for Ped2 dataset.
EER is the error at the point where false positive and false negative rates are equal. Table
2 shows the EER results of our models and other approaches in Ped2 dataset. To the best
of our knowledge, EER is typically reported only on Ped2 dataset. Nevertheless, for com-
pleteness, our EER results on Avenue are 26.96, 22.46, and 22.14 for the baseline, our model
trained using patch based pseudo anomalies, and our model trained using skip frame based
pseudo anomalies, respectively. Similarly, in the same order of models, the results on Shang-
haiTech are 34.08, 33.78, and 29.08. Similar to using AUC metric, our models trained using
pseudo anomalies achieve better performance compared to the baseline using EER metric.
Moreover, compared to the other methods, our models are competitive.
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2.5 Pixel-level Performance
In anomaly detection systems, frame-level performance metrics are widely popular [4, 5, 15,
36]. A pixel-level metric could be another option to evaluate such systems. In pixel-level
evaluation, a true positive is counted when at least 40% of the anomaly ground truth pixels in
the frame are predicted as anomalous, otherwise predicted as false positive [12]. However,
it was subsequently proposed by Li et al. [9] to count false positive only for the frames that
do not contain any anomaly annotation. These inconsistent interpretations of the pixel-level
evaluations make the anomaly detection systems incomparable [17]. Therefore, although
our approach is capable of localizing anomalies within frames, we do not provide pixel-level
AUC comparisons.

2.6 Comparisons with the Pseudo Anomaly Generated by GAN
To provide more extensive analysis, we also experiment with pseudo anomalies generated
by Generative Adversarial Network (GAN) using Ped2. Following [36], we obtain a bad
generator by keeping an adversarial AE undertrained. The architecture of the generator is
same with our AE (Table 1) and the architecture of the discriminator can be seen in Table 3.
To train the generator G, we utilize both reconstruction loss Lrecon and adversarial loss Ladv
as:

LG = Ladv +λLrecon, (5)

where Ladv is binary cross entropy loss to fool the discriminator to predict the reconstructions
as real, Lrecon is LN (Eq. (2) of our main manuscript), and λ is the weighting factor. To train
the discriminator, binary cross entropy loss to differentiate between real sequences and fake
sequences (reconstructed sequences) is used. The adversarial training is conducted for only
few first epochs before the generator starts producing good reconstructions. Then, we utilize
only the generator to generate bad reconstructions as pseudo anomalies. As seen in Table 4,
we experiment with several bad generators trained using different settings, i.e., λ , stopping
epoch, and discriminator learning rate. We achieve a maximum of 93.66% AUC, which is
better than the baseline (92.49%) but still inferior to our proposed pseudo anomalies based
methods. The lower performance may be caused by non-optimal bad generator, since it
is difficult to optimize the GAN-based pseudo anomaly generation without any particular
objective function. Therefore, the GAN-based pseudo anomalies used with our method may
improve the baseline performance. However, the proposed pseudo anomaly generation is
more robust and yields superior results.
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