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A Supplementary Experiments
DETR with the ResNet-101 backbone can achieve higher performance while the FLOPs will
increase accordingly. We add experiments using the ResNet-101 backbone and adding a
dilation to the last stage of the backbone. Other network structures and hyper-parameters
remain unchanged. In Figure 1, we compare the AP of ACT with DETR-DC5 and the K-
mean clustering. We refer to hash rounds in our model as L and refer to the number of
clusters in K-means as C. In Table 1, we also compare the AP, APL, APM , and APS of our
model with DETR-DC5 in detail.

We can draw conclusions similar to using resnet50 as the backbone network. We reduce
the FLOPs of DETR while the loss in AP is only 0.5%. And comparing with k-means
clustering, our adaptive clustering can better solve this task, and we have obtained higher
accuracy with lower FLOPs. Most of the loss in AP comes from small and medium-sized
objects. We guess this is due to the shift of the bounding box predicted by ACT, which is
discussed further in Section C.

This experiment further proves the generalization of our method and switching the back-
bone network will not make ACT invalid. Therefore, we are confident to believe that apply-
ing our method to other attention models in computer vision can also achieve ideal results.

B Visualisation of Adaptive Clustering
To analyze which queries are represented by the same prototype, we visualize some repre-
sentative clusters in Figure 2. We can easily find that the three clusters displayed are the
features of the cow, the sky, and the field. This indicates that our clustering is related to se-
mantics and location. Those queries with similar semantics and similar locations will easily
be grouped.

C Comparison of the Prediction
In order to analyze the impact of our adaptive clustering attention on the final results, we
compare the predictions of ACT and DETR. We found that our method has very little impact
on the label prediction, but it will cause the bounding boxes to shift, disappear, or repeat.
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Model GFLOPs AP APL APM APS

Backbone (ResNet-101) 192.3

DETR-DC5 +58.1 44.9 62.3 49.5 23.7
ACT (L=32) +43.1 44.4 62.1 49.2 23.0
ACT (L=24) +37.8 43.4 62.1 48.3 21.0
ACT (L=20) +34.1 42.4 61.7 47.4 19.9
ACT (L=16) +29.6 40.0 60.8 45.3 16.5

Table 1: We compare the AP of our model with DETR-DC5. All the models use dilated
ResNet-101 as the backbone. We refer to the bbox AP of large, medium and large size
instance as APL, APM and APS respectively.
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Figure 1: We compare the AP of ACT with
DETR-DC5 and the K-mean clustering. All
the models use dilated ResNet-101 as the
backbone. We refer to hash rounds in our
model as L and refer to the number of clus-
ters in K-means as C.

Figure 2: We visualize some representative
clusters in the encoder. The queries where
the white pixel is located belong to the same
cluster.

The most common impact is the shift of the bounding box, which is observed in most
of the predictions. However, the shift of the large size bounding box has little effect on the
final prediction result, which explains why the AP loss of ACT mainly occurs on small and
medium-sized objects. The red arrow in Figure 4 marks some shifted bounding box. The
shift of the bounding box in Figure 4(a) is much more serious than others. But due to its large
size, most of the shifted bounding box still overlaps the target object. However, the small
size bounding box of the tie (in Figure 4(b)) and the person (in Figure 4(c)) has deviated
from the target object. Our MTKD transfer the knowledge of the bounding box regression
branch, so it can obtain a significant improvement in AP.

DETR sometimes produces multiple overlapping bounding boxes for some objects, so
does the ACT. This is because of the wrong prediction of “no objects”. ACT can sometimes
correct the misjudgment of DETR, while sometimes it will produce new misjudgments. For
example, in Figure 3(a) there are multiple bounding boxes for the toilet both in ACT and
DETR. In Figure 3(b), ACT eliminates the redundant bounding box of the person in DETR,
while in Figure 3(c), ACT creates a new redundant bounding box for the train.
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Figure 3: DETR and ACT sometimes produce multiple overlapping bounding boxes for
some objects. The red arrow marks the redundant bounding boxes.
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DETRACT
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Figure 4: ACT sometimes causes the bounding box to shift. The red arrow marks the shifted
bounding boxes.


