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Abstract

Multi-Modal Self-Supervised Learning from videos has been shown to improve
model’s performance on various downstream tasks. However, such Self-Supervised pre-
training requires large batch sizes and a large amount of computation resources due to the
noise present in the uncurated data. This is partly due to the fact that the prevalent training
scheme is trained on coarse-grained setting, in which vectors representing the whole
video clips or natural language sentences are used for computing similarity. Such scheme
makes training noisy as part of the video clips can be totally not correlated with the other-
modality input such as text description. In this paper, we propose a fine-grained multi-
modal self-supervised training scheme that computes the similarity between embeddings
at finer-scale (such as individual feature map embeddings and embeddings of phrases),
and uses attention mechanisms to reduce noisy pairs’ weighting in the loss function. We
show that with the proposed pre-training scheme, we can train smaller models, with
smaller batch-size and much less computational resources to achieve downstream tasks
performances comparable to State-Of-The-Art, for tasks including action recognition and
text-image retrievals.

1 Introduction
Self-Supervised Learning has recently emerged as an effective method for learning good data
representations from unlabelled data to improve downstream task performances [1, 9, 19, 25,
30]. Among these methods, Multi-Modal Self-Supervised Learning from uncurated videos
are particularly effective, achieving downstream task performances comparable to Supervised
Pre-Training for tasks such as action recognition [1, 25, 30], information retrieval [31] and
video question answering [3]. These methods mostly use Noise Contrastive Estimation [15]
to exploit the inherent correlations between different modalities in multi-modal video data.
For example, in the case of video-text learning, embeddings of video frames and narrations
belonging to the same video clip are pushed closer to each other while embeddings belonging
to different video clips are pushed further apart.
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Figure 1: Illustration of uncorrelated pairing between video content and accompanied narra-
tions. Example is from YouCookII [43] dataset.

These approaches, while effective in boosting downstream task performances, make simplify-
ing assumptions about the multi-modal data. These methods embed a whole video clip or
a whole natural language sentence into a single embedding vector. However, for uncurated
videos, narrations are mostly only correlated with a small part of the video clip. For example,
in Figure 1, the narration “Sprinkle salt and black pepper” does not refer to other parts of the
scene such as tomatoes, lettuces and bread. Computing contrastive loss between embedding
vectors of the whole video clip and narration will push embeddings of unrelated parts (e.g.
“tomato” in the video and the word “salt” in the narration) closer. To reduce such noise,
contrastive learning approaches [9, 19, 25] usually requires large batch sizes containing many
negative pairs to pull embedding of unrelated parts further, and consequently requires a large
amount of computational resources for training. In addition, these methods often use large
models for boosting performance, and thus neglect terminal device application scenarios (e.g.
smartphone), where computation resources are very limited.

In this paper we propose a Fine-Grained Multi-Modal Self-Supervised Learning (FG-MMSSL)
method, which computes contrastive loss at finer granularity level, such as between embed-
dings of spatial-temporal regions in video modality and phrases in text modality. In order to
reduce the loss variance caused by the uncorrelated finer-granularity embedding pairs, we
multiply the computed similarities between each pair with an estimated importance score
to scale down the ratio of noise-inducing pairs’ contribution in the loss function. These
importance scores are computed using an attention mechanism which matches query and key
embeddings generated from finer-granularity embeddings of different modalities. Through
our experiments, we show that our FG-MMSSL training scheme can train smaller models
with smaller batch sizes on platforms with a smaller amount of computational resources, and
achieve downstream task performances comparable to state-of-the-art SSL pretraining meth-
ods (for action classification and text-to-video retrieval), or surpass supervised pretraining
methods (for temporal action localisation).

2 Related Works
Single-Modality Self-Supervised Learning: Single-Modality Self supervised learning usu-
ally uses pretext tasks to automatically generate differentiable learning signals from the
data itself in order to train the feature extraction neural networks. For the case of image
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modality, such tasks include predicting artificial rotations [13], colourisation [41, 42] and
feature clustering [4]. Recently Contrastive Learning [16] has become increasingly popular
for learning both visual [9, 19], audio [6, 28] and natural language [11] representations. The
method is to push positive pairs’ embedding closer while pulling negative pairs’ embedding
further apart. Positive pairs are usually created by applying data augmentations on the same
data point to create pairs that share contents but not lower-level data statistics.

Methods are also developed for video modality self-supervised learning using different pre-
text tasks. Such pre-text tasks include future prediction [17], sequence order prediction [26],
playback speed [7, 36] and spatial transformations [20]. Recently there are also works [18]
that focus on fewer data SSL pre-training by mining hard positives using proximity in optical
flow modality’s embeddings.

Multi-Modality Self-Supervised Video Representation Learning: Video data usually has
multiple modalities, including visual, audio and text. The time synchronised nature of these
modalities provides a natural way of extracting positive pairs co-located in time without the
need of pre-text tasks. Many methods are developed for audio-visual learning [2, 5, 29]
where co-occurrence of action and sound serve as learning signals. Methods have also been
developed for speech-visual learning [1, 3, 25], which use the recently published HowTo100M
instructional video dataset [24] to exploit the correlation between spoken instructions and
actions performed in the videos. These self-supervised methods achieved downstream task
performance on-par with supervised SOTA results for tasks such as action recognition and
text-image retrieval. There are also concurrent works [8, 27] introducing mechanisms to scale
a pair’s contribution to the loss function. Among them, Morgado et al [27] use cumulative
distributions of the moving averages of dot-product similarities, while Chen et al [8] uses
pseudo-masks generated with smoothed Heaviside function. These methods differ from our
work in that they are not using a separate attention mechanism to compute the scaling weights,
which is shown to be effective in this paper.

Attention: Attention Mechanism, first popularised in the Transformer architecture [34], has
now seen wide applications in different areas including Natural Language Processing [32, 34],
Image Classification [10], Speech Recognition [6, 38] and graph data processing [35]. While
Attention mechanism has also been applied for video tasks such as video retrieval [12]. While
attention mechanism has been used in Multi-Modal Self-Supervised Learning for processing
within each modality [14, 31], to our best knowledge, our work is the first to explore using
attention mechanism in cross modality contrastive loss computation.

3 Method

3.1 Background: Multi-Modal Contrastive Learning

Self-supervised learning aims to learn a function, usually parameterised by a neural network
f , that can produce general-purpose feature representation z = f (x) for data x. By training on
a large unlabelled dataset, the learnt function f can be then transferred to downstream task
to boost performance over training from scratch. The most popular method for SSL is noise
contrastive learning [9, 19], which we will briefly review in this section.

Citation
Citation
{Gidaris, Singh, and Komodakis} 2018

Citation
Citation
{Zhang, Isola, and Efros} 2016

Citation
Citation
{Zhang, Isola, and Efros} 2017

Citation
Citation
{Asano, Rupprecht, and Vedaldi} 2019

Citation
Citation
{Hadsell, Chopra, and LeCun} 2006

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Baevski, Zhou, Mohamed, and Auli} 2020

Citation
Citation
{Oord, Li, and Vinyals} 2018

Citation
Citation
{Fang, Wang, Zhou, Ding, and Xie} 2020

Citation
Citation
{Han, Xie, and Zisserman} 2020{}

Citation
Citation
{Misra, Zitnick, and Hebert} 2016

Citation
Citation
{Benaim, Ephrat, Lang, Mosseri, Freeman, Rubinstein, Irani, and Dekel} 2020

Citation
Citation
{Wang, Jiao, and Liu} 2020{}

Citation
Citation
{Kim, Cho, and Kweon} 2019

Citation
Citation
{Han, Xie, and Zisserman} 2020{}

Citation
Citation
{Alwassel, Mahajan, Korbar, Torresani, Ghanem, and Tran} 2019

Citation
Citation
{Asano, Patrick, Rupprecht, and Vedaldi} 2020

Citation
Citation
{Owens and Efros} 2018

Citation
Citation
{Alayrac, Recasens, Schneider, Arandjelovi{¢}, Ramapuram, Deprotect unhbox voidb@x protect penalty @M  {}Fauw, Smaira, Dieleman, and Zisserman} 2020

Citation
Citation
{Amrani, Ben-Ari, Rotman, and Bronstein} 2020

Citation
Citation
{Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman} 2020

Citation
Citation
{Miech, Zhukov, Alayrac, Tapaswi, Laptev, and Sivic} 2019

Citation
Citation
{Chen, Xie, Afouras, Nagrani, Vedaldi, and Zisserman} 2021

Citation
Citation
{Morgado, Misra, and Vasconcelos} 2021

Citation
Citation
{Morgado, Misra, and Vasconcelos} 2021

Citation
Citation
{Chen, Xie, Afouras, Nagrani, Vedaldi, and Zisserman} 2021

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, and Liu} 2020

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Baevski, Zhou, Mohamed, and Auli} 2020

Citation
Citation
{Wang, Mohamed, Le, Liu, Xiao, Mahadeokar, Huang, Tjandra, Zhang, Zhang, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020{}

Citation
Citation
{Veli£kovi¢, Cucurull, Casanova, Romero, Liò, and Bengio} 2018

Citation
Citation
{Gabeur, Sun, Alahari, and Schmid} 2020

Citation
Citation
{Ging, Zolfaghari, Pirsiavash, and Brox} 2020

Citation
Citation
{Patrick, Huang, Asano, Metze, Hauptmann, Henriques, and Vedaldi} 2021

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020



4 DUO AND SALAH: FINE-GRAINED MULTI-MODAL SELF-SUPERVISED LEARNING

(a) MMSSL (b) FG-MMSSL

Figure 2: Comparison of (a) Multi-Modal Self-Supervised Learning (MMSSL) and (b) our
Fine-grained Multi-Modal Self-Supervised Learning (FG-MMSSL) approach.

The central idea of contrastive learning is that embeddings of inputs containing the same (or
similar) contents (positive pairs) are pushed closer together in the embedding space while
embeddings of input containing different contents (negative pairs) are pushed further apart.
While Single-Modality contrastive learning [9, 19] usually uses different data augmentations
of the same data point to generate positive pairs that share the content but not the lower-level
statistics, in multi-modal data, such positive pairs naturally exist, such as video clips and
accompanying narrations. For two modality video-text case, input video clip x and narration
text y are first embedded by a modality-specific embedding module fm(x), where m ∈ {1,2}
denotes the modality. Then the embeddings are used for computing the multi-modal Noise
Contrastive Estimation (NCE) [28] loss as:

−
N

∑
t=1

log

(
∑x,y∈Pt e f1(x)T f2(y)

∑x,y∈Pt e f1(x)T f2(y)+∑x′,y′∈Nt e f1(x′)T f2(y′)

)
(1)

Here, P denotes positive pairs while N denotes negative pairs. Multi-Modal Contrastive
approaches [1, 3, 25] usually sample positive pairs as video clips and the text narrations that
are nearest in the time domain from the same video source, and sample negative pairs as video
clips and text narrations from different video sources.

3.2 Motivation for Fine-Grained MMSSL
In equation 1, a whole video clip x and text narrations y containing multiple sentences are both
embedded into a 1-dimensional feature vector by f1 and f2. Minimising the Contrastive Loss
pushes x and y sampled from positive pairs Pt closer. However, many spatial temporal sub-
parts of the video clips are actually not correlated with phrase sub-parts in the text narrations,
as illustrated in Figure 1. Therefore computing similarities between the coarsely embedded
feature vectors is inherently noisy as the coarsely embedded vectors are pooled from features
of these sub-parts. In this section, we perform a detailed analysis on this subject.

In most MMSSL approaches [1, 25], fm consists of a Feature Extractor (Convolutional Neural
Network for video modality; Multi-Layer Perception or Transformer for text modality), a

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Oord, Li, and Vinyals} 2018

Citation
Citation
{Alayrac, Recasens, Schneider, Arandjelovi{¢}, Ramapuram, Deprotect unhbox voidb@x protect penalty @M  {}Fauw, Smaira, Dieleman, and Zisserman} 2020

Citation
Citation
{Amrani, Ben-Ari, Rotman, and Bronstein} 2020

Citation
Citation
{Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman} 2020

Citation
Citation
{Alayrac, Recasens, Schneider, Arandjelovi{¢}, Ramapuram, Deprotect unhbox voidb@x protect penalty @M  {}Fauw, Smaira, Dieleman, and Zisserman} 2020

Citation
Citation
{Miech, Alayrac, Smaira, Laptev, Sivic, and Zisserman} 2020



DUO AND SALAH: FINE-GRAINED MULTI-MODAL SELF-SUPERVISED LEARNING 5

pooling layer and a projection layer. For the video modality, input video clip x are passed
through a 3D CNN, which output a final feature map H, which are arrays of feature vectors hi
where i index over the flattened feature maps’ height, width and time dimension. The feature
map is then pooled by a pooling function Pool to generate a single 1-dimensional feature
vector. Here we use the most widely used Average Pooling AvgPool(hi) =

1
N ∑i∈N hi in our

analysis. The final projection layer is a linear layer W ×AvgPool(hi)+b that projects to a
common feature space shared with other modalities. We can then rewrite the dot-product
terms in equation 1 as:

e f1(x)T f2(y) = e(W
1
N ∑i∈N hi+b)T f2(y) = e

1
N ∑i∈N hT

i W T f2(y)+bT f2(y) (2)

Where the hT
i W T f2(y) computes similarities between each feature map vectors hi with the

text embedding f2(y). For the dot-product term in the numerator of Equation 1, minimising
the Contrastive Loss maximises the dot-product term, which subsequently maximises all
hT

i W T f2(y) pairs for i ∈ N, even though many feature map vectors hi are uncorrelated with
text embedding f2(y). Maximising these uncorrelated pairs introduce noise into the learn-
ing signal, thereby making the training longer and requiring larger batch size to even out
sampling discrepancies. While we only perform the analysis on the video modality, similar
analysis can be done for other modalities. Please refer to Appendix A for a detailed discussion.

3.3 Fine-Grained MMSSL with noise suppression
In order to reduce noise, ideally we want to minimise the contribution of the uncorrelated
positive sub-part pairs to the loss function, and maximise the contribution of the uncorrelated
negative sub-part pairs. However in the self-supervised learning setting there is no label
information to identify these pairs. Here we propose FG-MMSSL, a framework that computes
an additional Contrastive Loss computed directly using the sub-part pairs, and utilise a cross-
modal attention mechanism to generate attention variables which scales the contributions
from uncorrelated pairs. The additional loss L f g is computed as:

−L f g =
N

∑
t=1

log

 ∑hhh,lll∈Pt ∑i, j eai, j f1(hi)
T f2(l j)

∑hhh,lll∈Pt ∑i, j eai, j f1(hi)T f2(l j)+∑hhh′,lll′∈Nt ∑i, j e
1

1+ai, j
f1(h′i)

T f2(l′j)

 (3)

Here hhh and lll are intermediate dense feature arrays extracted from the neural network pipeline
of each modality. Specifically hhh is the feature map output from the last convolutional layer
while lll is the array of hidden representations (otherwise known as contextualised word
representations) from text encoders. hi denotes each grid location in the feature map hhh while
li denotes individual feature vectors in lll. ai, j is an attention variable which scales the dot
product of sub-part pair (hi, l j). In positive pairs, we directly multiply ai, j with the dot-product
of positive embedding pairs such that more correlated pairs are given a larger weighting. We
multiply 1

1+ai, j
with negative embedding pairs such that uncorrelated pairs are given a larger

weighting. ai, j is computed as:

ai, j = softmaxi(
kT

i q j√
dk

); ki = Linear(hi); qi = Linear(li) (4)

Here ki is the key vector generated by applying a linear layer on feature maps hi of the video
modality, while qi is the query vector generated by applying a linear layer on the array of
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hidden representations li from text modality. Attention parameter ai, j is then computed using
the standard attention mechanism [34], as shown in equation 4. We choose to generate queries
from text-modality and keys from video-modality. This is because as narration texts are
describing the videos, most of the text are correlated with parts of the video. However the
reverse is not true, as videos contain many parts (such as background) that are not described
in the text. Thus for each query generated from text embedding, there is a higher chance that
there will be a matching key in video embedding. It is tempting to think that multiplying
embedding’s dot-product similarity with the attention variable, which is essentially another
dot-product, is the same as square the dot-product term as ( f1(hi)

T f2(l j))
2. However, in our

ablation study, we show that having a separate attention mechanism is essential for improving
performance.

3.4 Training Details
For self-supervised pre-training, the model is trained with the following loss function:

L= Lcg +βL f g + γLreg (5)

Here Lcg is the typical NCE loss function computed between whole video-clip and text
embeddings. For this loss, we use MIL-NCE [25] loss, a Multi-Instance NCE loss function.
L f g is the fine-grained loss as described in Equation 4. We use the same hyper-parameter
setting as in [25]. β is a factor that balances between Lcg and L f g. Through hyper-parameter
search, we set β = 0.001 as this gives the best result. The optimal value of β is small due to
the fact that L f g is on a larger scale than Lcg. Lreg is an L2-Regularisation loss applied on
model parameters. We set γ , the coefficient of the regularisation term, as 1e−7. To train our
model, we use ADAM [21] Optimiser with initial the learning rate of 1e−3 with linear warm
up of 5k steps. We decay the learning rate twice by the factor of 10 at epoch 100 and 200. For
self-supervised pre-training, we train for in total 300 epochs.

4 Evaluation
We first describe implementations details of our methods in section 4.1. To show the generality
of the learnt representation, we then present downstream task performance evaluation for
three different tasks, which are Action Recognition in Section 4.2, text-to-video retrieval in
Section 4.3, and temporal action detection in Section 4.4. Finally we perform ablation studies
to investigate the effectiveness of various design choices of our method.

4.1 Implementation Details
Pre-training dataset: For self-supervised pre-training, we use the large-scale instructional
video dataset named HowTo100M [24]. This dataset contains instructional videos with text
narrations generated with automatic speech recognition. We follow the data processing proce-
dure used in MIL-NCE [25]. Briefly we randomly sample fixed length clips of 3.2 seconds
length. The text narrations are chosen as the 3 narration sentences that are nearest in time. In
each batch, videos and their corresponding narrations are sampled as positive pairs, while
videos and narrations from different sources are sampled as negative pairs.
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Model details: For the video-modality, we used S3D-G [39] as the 3D CNN backbone for
extracting video features. While it is possible to use larger models with better performances
such as TSM [22], we choose S3D-G particularly because we would like to demonstrate that
with our method, this considerably smaller model can still be trained to achieve comparable
downstream task performances to large models. This is also important because smaller
models like S3D-G is much more suitable for terminal device applications, which has limited
computational power and on-chip memory. For the text-modality we use T5-Encoder [32]
pre-trained on C4 Corpus to generate contextualised word representations. Whole vector
embedding used in coarse-grained loss are generated by applying an average-pooling and
linear layer to the video feature map, and a self-attention pooling [32, 34] to the contextualised
word representations. The dimension of the joint video-text embedding space is determined
as 512 via hyper-parameter search.

Training Setup: For self-supervised pre-training, we use a server with 8 Nvidia V100 GPUs,
Intel Xeon CPU and 128 GB system memory usage limit. For fine-tuning on downstream
tasks, we use a machine with 2 Nvidia Geforce 2080Ti GPUs, Intel-i9 CPU and 64 GB system
memory. For self-supervised pre-training, we use a batch size of 256, and distribute the
training across the 8 GPUs.

4.2 Action Recognition

Method Dataset(Duration) Arch. Params. Hardware UCF101
MIL-NCE [25] HTM(15y) S3D 9.1M 64×TPU 91.3

XDC [2] IG65M(21y) R(2+1)D-50 46.9M - 94.2
GDT [30] IG65M(21y) R(2+1)D-18 33.3M 64×GPU 95.2
MMV [1] HTM+AS(16y) TSM50×2 93.9M 64×TPU 95.2

Ours HTM(15y) S3D 9.1M 8×GPU 94.3
Table 1: Action Recognition Accuracy of downstream task fine-tuning of self-supervisedly
pre-trained models. We also compare the amount of data used, model’s number of parameters,
and hardware platform used for self-supervised pre-training.

We first evaluate the learnt representation on the downstream task of Action Recognition.
We choose UCF101 [33] dataset, one of the most popular dataset for action recognition.
We evaluate our method in the fine-tuning setting. We add a linear classifier on top of the
pre-trained S3D video module, and then train on UCF101 with a smaller learning rate for
the S3D module. We use learning rate of 10−3 for the linear classifier and 10−4 for the S3D
parameters. We additionally apply weight decay of 10−5 and data augmentations including
random cropping, horizontal flips and colorisation during training. For fine-tuning, we used a
batch size of 64. Table 1 shows the classification accuracy of our fine-tuned model compared
against previous state-of-the-art self-supervised learning methods. Our method achieves
accuracy on-par with these methods, while using a smaller dataset, a much less number
of parameters and considerably less pre-training hardware requirement. Note that TPU is
approximately 2 times faster than Nvidia V100 GPU, and has 128GB memory, which is 4
times of V100’s 32GB memory size.
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Method Dataset(Duration) Video Model Params R@1
HowTo100M [24] HTM(15y) 9.1M 14.9

NoiseEst [3]. IN+K400+HTM(15y+) 104M 17.4
MMT [12] Multiple(28y+) 133.3M 26.6
SSB [31] IN+IG65M+HTM(36y+) 101.4M 30.3

Ours HTM(15y) 9.1M 27.1
Table 2: Text-to-Video Retrieval Performance on MSRVTT dataset. We also compare the
amount of data used and the parameter counts of video models.

4.3 Text-to-Video Retrieval

We further evaluate our method on the downstream task of text-to-video retrieval. We choose
MSRVTT as the downstream dataset due to its popularity. We evaluate our method in the
fine-tuning setting, meaning that we train both the pre-trained video and text encoders on the
downstream task. We use a learning rate of 10−3 and weight decay of 10−4, and a batch size
of 32. To evaluate the performance, we use Recall at K (R@K) and Median Rank(MedR). We
only show R@1 result in Table 2 due to space limitation, and leave other R@K and MedR
results in Appendix B. We compare against previous the SOTA Self-Supervised Learning
pre-training method tested on MSRVTT dataset. Our method, while using fewer data and a
smaller number of parameters, achieve better R@1 than all compared methods except SSB,
which uses double amount of pre-training data and 10 times larger model.

4.4 Temporal Action Detection

Method 0.3 0.4 0.5 0.6 0.7
TSN(Supervised K400) 54.5 47.6 40.2 30.8 23.4

OURS(SSL HTM) 56.7 49.8 42.1 32.0 22.8

Table 3: Temporal Action Detection result of G-TAD [40] using different pre-trained feature
extraction module. Results are measured as mean Average Precision (mAP) at different IoU
threshold ranging from 0.3 to 0.7. The first row shows the G-TAD’s original performance
using TSN network supervisedly pre-trained on K400 dataset for feature extraction. SSL
denotes self-supervised pre-training.

In this section we evaluate how well can the learnt representation be utilised for Temporal
Action Detection (TAD) downstream task. In Temporal Action Detection task, a model
predicts not only action classes, but also their start and end time. Most TAD methods [23, 40]
uses a frozen feature extraction module to extract features for each frame of the video, and
process the features using post-processing networks such as Boundary Matching Network [23]
and graph neural networks [40]. In this experiment, we use our pre-trained S3D model to
extract frame features, and test the quality of extracted features with G-TAD [40], one of
the SOTA methods. In the original implementation, G-TAD uses TSN [37] supervisedly
pre-trained on K400 dataset to extract video features for both RGB and optical flow video
streams. In table 3, we compare our extracted features against TSN features by swapping the
TSN RGB features with our RGB features extracted using our SSL model. We keep the same
training setup as in the original work [40]. We report the mean Average Precision (mAP) at
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different Intersection over Union (IoU) thresholds. Our method pre-trained on HowTo100M
dataset surpasses the supervised pre-training features for all IoU thresholds except for 0.7.

4.5 Ablation Studies
In this section, we perform ablation studies to investigate the effectiveness of various design
choices in our method. We use Downstream task performance on UCF101 Action Recognition
dataset as the proxy metric for the quality of learnt representation. Specifically we perform
ablation studies on dimensions of joint embedding space and text encoders.

Dimensions UCF101
512 94.3
1024 93.8

6144 (norm) 91.3

Table 4: Dimensions of embedding space.

Text Encoders UCF101
MLP 92.4
BERT 88.9

T5 94.3

Table 5: Different Text Encoders.

Dimensions of Joint Embedding Space: In Table 4 we perform an ablation study on the
dimensions of the joint embedding space for sub-part pairs. While in our implementation
embedding is not normalised to a unit sphere as in some other works [3, 19], we additionally
tested using normalised embedding of dimension 6144, as shown in Table 4. The result is
considerably worse than unnormalised counter-parts.

Text Encoders: In Table 5 we tested three different variations of the text encoders, which are
MLP as in [25], BERT [34] and T5 [32]. BERT, a popular transformer-based model, performs
worse than MLP. This is also observed by [25], who hypothesise that this is possibly because
of domain differences in the pre-training dataset. T5, which varies slightly the BERT model
but is trained on a different Corpus, has the best performance. We hypothesise that this is
because the C4 corpus [32] is more aligned with the form of natural language text narrations
found in the instructional video datasets.

Batch Sizes: In Table 6 we tested the performance with different pre-training batch sizes.
While it is generally observed that larger batch sizes usually lead to better self-supervised
training results, unfortunately we are not able to test larger batch sizes due to limited GPU
memory.
Loss Functions: In Table 7 we show ablation study results of different loss functions. Here
“MIL-NCE” is the typical Multi-Instance NCE loss function, as used in [25]. “FG-MMSSL”
is our proposed loss function as in Equation 3, while “FG-MMSSL-No-Attn” is the loss
function without the attention scaling terms, and with the dot-product term squared, as

Batch Size UCF101
64 91.8

128 93.5
256 94.3

Table 6: Different Batch Sizes

Loss Function UCF101
MIL-NCE 91.3

FG-MMSSL-No-Attn 92.1
FG-MMSSL-No-Inv 93.8

FG-MMSSL 94.3

Table 7: Different Loss Functions
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discussed in Section 3.3. Note that squaring the dot-product exponential term is equivalent
to temperature annealing as performed by other SSL methods [1, 9, 19]. It can be observed
that adding an attention scaling mechanism significantly boost the UCF101 downstream task
performance. Computing sub-pair loss without attention mechanism, as in “FG-MMSSL-No-
Attn” experiments, there is only a 0.8% increase in accuracy, which can be mostly attributed
to the more powerful T5 Text Encoder used. In “FG-MMSSL-No-Inv” we replace the 1

1+ai, j

negative pair attention term in Equation 3 with ai, j. We hypothesise that having the attention
mechanism, which scales the dot-product term separately, is effective because:

• The Softmax attention mechanism induces sparsity with high weighting for only one or a
few pairs while low weighting for the other pairs. In many scenes, the text descriptions
usually only have a high correlation with a particular part of the image/video, this
sparsity inducing mechanism further reduces the contribution of the majority noisy
pairs.

• The inverse scaling term 1
1+ai, j

for the negative pairs works by decreasing the contribu-
tion of correlated pairs in the negative pair part of the loss function, so that correlated
pairs will be less pushed apart. This is further shown in this ablation experiment, as
“FG-MMSSL-No-Inv” has lower downstream task performance than “FG-MMSSL”.

5 Conclusion
In this work we developed FG-MMSSL, a multi-modal self-supervised learning method that
reduces noisy learning signals by adjusting pair’s weighting in the loss function using an
attention-based mechanism. We show that our method can train the smaller S3D model using
smaller datasets and less hardware to achieve downstream performances on par with the
state-of-the-art. Training smaller models to achieve the same performance as their larger
counter-parts is particularly important for device-side implementations, where computational
resources are very limited. With this work, we hope to spark more interest in more effi-
cient and environmentally-friendly self-supervised learning for low-computational-resource
applications.
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A MMSSL Analysis for other modality
While in Section 3.2 we analysed the case for video modality, here we perform the same
analysis on text modality. For Text modality, the input yyy is usually a sequence of tokens
that index different words in a specific natural language. The input is often processed in an
encoding pipeline, which are implemented with architectures including Recurrent Neural
Networks, Convolutional Neural Networks and Transformers. The output of this processing
pipeline is a sequence of contextualised embedding feature vectors lll = (l1, . . . , lN). In most
Multi-Modal Self-Supervised Learning works [1, 3, 24, 25], the sequence is first pooled using
a Max-Pooling operation and generate a single feature vector representing the whole sequence.
The feature vector is then further projected into the multi-modality embedding space using
a linear layer W ×MaxPool(lll)+ b. In this case for text modality, we can then rewrite the
dot-product terms in equation 1 as:

e f1(x)T f2(y) = e f1(x)T (W×MaxPool(lll)+b) = e f1(x)T W×MaxPool(lll)+ f1(x)T b) (6)

It is not possible to break down MaxPool into individual components for each feature vector
li in a similar fashion to AvgPool in Equation 6. However we can still perform some analysis.
MaxPool takes a sequence of same-dimension vectors, and return the largest value in each
dimension. This is equivalent to finding a hyper-cube that tightly bounds all vectors in the
sequence, and return the vector of the vertex in the domain where all dimension axes are
positive. We first make the assumption that in the input text yyy there are words that are not
correlated with the video modality (which is a very reasonable assumption in narrated videos).
Unless MaxPool is guaranteed to return values only from feature vectors corresponding
to the video-correlated words, the gradient will propagate back to the feature vectors of
video-uncorrelated words. While MaxPool cannot make this guarantee, video-uncorrelated
words will introduce noise in training in the same way as discussed in Section 3.2. This is
particularly the case at the start of the training, where word feature vectors are generated from
random embedding.

B MSRVTT Full Result
Table 8 shows the full Text-to-Video retrieval results on MSRVTT datasets. The metrics
include Retrieval rate at (1,5,10) and Median Rank.

Method R@1 R@5 R@10 MR
HowTo100M [24] 14.9 40.2 52.8 9

NoiseEst [3]. 17.4 41.6 53.6 8
MMT [12] 26.6 57.1 69.6 4
SSB [31] 30.3 58.5 69.3 3

Ours 27.1 57.4 69.1 4
Table 8: Text-to-Video Retrieval Performance on MSRVTT dataset (Full Results) R@K
denotes retrieval at K while MR denotes Median Rank.
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