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1 Datasets details

DomainNet. DomainNet is the largest dataset for benchmarking domain adaptation meth-
ods. It has been introduced by [6] and contains more than 0.6 millions images for six distincts
domains (clipart, infograph, painting, quickdraw, real, sketch) spread over 345 classes.

MiniDomainNet. MiniDomainNet [11] is a subset of DomainNet that uses less images
(∼ 140K images) with smaller size of 96× 96 spread over 4 selected domains and 126
selected classes. MiniDomainNet was introduced to reduce the requirements for computing
resources and to remove noisy domains/examples.

Office-Home. Office-home [8] has been widely used as a standard dataset for evalu-
ating domain adaptation methods. It includes approximately 15500 images from 4 different
domains: Art, Clipart, Product and Real-World. For each domain, it contains images of 65
object categories found typically in Office and Home settings.

2 Implementation details

Strong data augmentation. Strong data augmentation ts(.) is based on the same image
transformations as RandAugment [1]. An image is augmented with ts(.) following these
steps:

1. Two transformations are sampled randomly in the list of possible transformations (Ta-
ble 1) and the parameters defining these transformations are drawn randomly inside
their corresponding range (Table 1).

2. The image is horizontally and randomly flipped with a probability p = 0.5.

3. Random cropping is applied to the image with a crop size between [90%,100%] of the
original image size. The crop is resized to (96,96) for MiniDomainNet, (180,180) for
DomainNet and (224,224) for Office-Home.

Weak data augmentation. Weak data augmentation tw(.) is made only of random hor-
izontal flips. The image is finally resized to (96,96) for MiniDomainNet, (180,180) for
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Transformation Hyperparameter Range Description

AutoContrast C [0,1]

Maximize (normalize) image contrast. It calculates a
histogram of the input image, removes C percent of the
lightest and darkest pixels from the histogram, and
remaps the image so that the darkest pixel becomes
black (0), and the lightest becomes white (255).

Brightness B [0.1,1.9] Control image brightness by a factor B. B = 0 gives a
black image and B = 1 gives the original image.

Color C [0.1,1.9]
Adjust the colour balance of an image given a
enhancement factor C. C = 0 gives a black and white
image, C = 1 gives the original image.

Contrast C [0.1,1.9]
Control the contrast of an image given an enhancement
factor C. C = 0 gives a solid grey image and C = 1 gives
the original image.

Equalize [0,1] Equalize the image histogram.
Identity [0,1] Returns the original image.
Invert [0,1] Invert the image.

Posterize B [4,8] Reduce the number of bits to B bits for each color
channel.

Rotate θ [−30,30] Rotate the image counter clocksize with an angle θ .

Sharpness S [0.1,1.9]
Adjust the image sharpness given an enhancement factor
S. S = 0 gives a blurred image, S = 1 the original image
and S = 2 an sharpened image.

ShearX R [−0.3,0.3] Shear the image along the horizontal axis with rate R
ShearY R [−0.3,0.3] Shear the image along the vertical axis with rate R
Solarize S [0,256] Invert all pixel values above a threshold S.

TranslateX t [−0.3,0.3] Translate an image with size (H,W ) along the horizontal
axis by t×W pixels.

TranslateY t [−0.3,0.3] Translate an image with size (H,W ) along the vertical
axis by t×H pixels.

Table 1: Transformations used for strong data augmentation ts(.). Most of the transfor-
mations are described by some hyperparameters. When one transformation depending on
parameters is drawn, its hyperparameters are randomly sampled within the specified Range.

DomainNet and (224,224) for Office-Home.
Architecture and hyperparameters. For DomainNet and Office-Home, the features

extractor F corresponds to a ResNet50 [3] while for MiniDomainNet a ResNet18 is used.
All networks are pretrained on the ImageNet dataset [2]. The embeddings hhh of the ResNet50
and the ResNet18 are respectively the 2048 dimensional features vector (d1 = 2048) and the
512 dimensional features vector (d1 = 512) obtained after the global average pooling layer.
In all experiments, dimension of the projection head representation zzz is set to d2 = 256,
temperature T is set to 0.1 and probability threshold τ to 0.95. The α hyperparameter for
MixUp is set to 0.4 for DomainNet, MiniDomainNet and 0.2 for Office-Home. λ1 and λ2 are
respectively set to 0.1 and 1. All our experiments are conducted using the PyTorch library [5]
with 2 Nvidia Tesla V100 GPUs. For optimization, Adam [4] method is used with an initial
learning rate of 10−4 and a cosine decay learning rate with a minimum learning rate of 0.
On DomainNet, MiniDomainNet and Office-Home, the models are trained respectively for
70K, 60K and 20K iterations. For these datasets, source and target batch sizes (NS,NT ) are
respectively set to (256,256), (256,256) and (128,128). For each raw source example, two
strongly augmented examples are generated.

Target examples pseudo labeling.
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Exponential moving average weights, as in the original FixMatch method [7], are used
for predicting the pseudo labels on the weakly augmented target examples and for the final
evaluation of the method. During all experiments, exponential decay parameter αEMA is set
to αEMA = 0.999.

3 Additional ablations
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Figure 1: Averaged accuracy on MiniDomainNet with respect to λ1(a) and λ2(b).

Performances with respect to λ1 and λ2. The hyperparameters λ1 and λ2 correspond
to the weights of the LISCL and Lunsup loss respectively. Setting λ1 and λ2 is a compro-
mise between the influence of LISCL to align source class conditional distributions enabling
general and transferable features and Lunsup to adjust features for the target domain.

To find a reasonable starting combination of (λ1,λ2) for further experiments and assess
their respective influence on the model performances, CMSDA has been trained for each
target domain of MiniDomainNet with two different settings. In the first setting, CMSDA
is trained with different λ1 while setting λ2 = 1. In the second setting, CMSDA is trained
with different λ2 while fixing λ1 = 0.1. Averaged accuracies over MiniDomainNet target
domains with respect to λ1 or λ2 are respectively reported on Figure 1a and Figure 1b. In
Figure 1a, we can notice that performances remain stable when λ1 ∈ [0.05,0.5] with the
best accuracy achieved at λ1 = 0.1. For λ1 > 0.5, the performance starts to decrease. In
Figure 1b, it seems that the performance remains stable for a large range of λ2 (λ2 ∈ [2,10]).
The best average accuracy is achieved for λ2 = 2 while for λ2 < 2 and λ2 > 10 performances
begin to deteriorate. For experiments on other datasets, we suggest starting CMSDA with
(λ1,λ2) = (0.1,2).

Source examples mixing strategies. In this section, a comparison between different
source examples mixing strategies is performed. More specifically, we compare MixUp [10]
with CutMix [9] when used for combining source examples. For the two mixing strategies,
accuracies for each target domain of MiniDomainNet are reported in Table 2. These re-

Target domain clipart painting real sketch average
MixUp 71.38 53.76 66.23 56.24 61.90
CutMix 69.68 53.18 67.14 51.43 60.36

Table 2: Performances on MiniDomainNet when using different mixing strategies.
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sults reveal that CutMix has comparable performances with MixUp except on sketch where
MixUp outperforms CutMix. We believe that by fine-tuning CutMix hyperparameters, it
would be possible to close the small performances gap between MixUp and CutMix. How-
ever, overall, there is no clear advantages to use one mixing method over another.
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