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Additional Analysis of Depth-aware CoordConv

In addition to the results in Section 5.1, we report the performance using additional methods
to calculate feature maps for depth-aware CoordConv. Hereafter, we describe other configu-
rations for depth-aware CoordConv, resulting in different feature maps.

Depth similarity map Dy;,,. It is based on the idea of [8] to calculate the similarity of the
depth image related to a specific point (in our case the point proposal p(x,y)). The depth
similarity Dy, is defined as

Dyin =exp(B-[D—D(p)|) -1,

1
Dy € [0.exp(B) — 1] M

with the normalized depth image D € [0, 1], the point proposal p and a scaling factor 3.
HHA map H,;;,. HHA encoding [2] represents the depth image by three channels (horizon-
tal disparity, height above ground, and angle with gravity). Fore each channel ¢ € {1,2,3}
of the HHA encoding H we calculate a distance map as

Hg = o~ (H° —H(p)),

. @)
dist € [—(X, (X],

whereas H¢ € [0, 1] is the c-th normalized channel of the HHA encoding.
Table 1 shows the results for the additional experiments, whereas the setup of the exper-

iments is identical to the one in Section 5.1. As reported in the main paper, using the
depth-distance map Dy;;; together with the 2.5D distance map F,s5p achieves the highest
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Method Rel. Coord- | Depth-dist. | 2.5D Dist. | Depth-sim. | HHA Inst.
Conv [7] Map Map Map Map | Seg. IOU

?:g.k E?:ECE X X X X X 83.01

}sgjg.k B?SECE v X X X X | 8563

]ssjg.k E?:;c;-l v v 4 X X 91.27

?:g.klg(r):r?c; v X X’ﬁ";}]y,) v x | 9091

g Branch | xS X /| soes

Table 1: Comparison of different configurations of depth-aware CoordConv for instance
segmentation on Siléane dataset. Setup and execution of experiments are identical to the
ones in Section 5.1 in the main paper.

accuracy. Using Dy, instead of Dy;; performs reasonable well, whereas the disadvantage
of Dy;y,, is that this similarity measure is not able to differentiate between positive and nega-
tive distances in z-direction, which results in an information loss. The HHA distance maps
H,;;, has the limitation that the HHA encoding already encode properties of geocentric pose,
which leads to ambiguities when relating it to the point proposal p.

Detailed Information about Loss Function

For simultaneously learning the tasks of grasp detection, semantic segmentation and instance
selection, we defined the composite loss function as

L= Z/graspﬂgmsp + Asemﬁ:sem + )Liizstﬁinstz (3)

with the grasp detection loss Lgysp, the semantic segmentation loss Lg,, and the instance
selection loss L. All parts are weighted with a specific hyperparameter A.
Grasp detection loss. The grasp detection 10ss L4 is defined as

Egrasp = ERPN + Lbox + Lrola (4)

where Lzpy defines the loss for training a Region Proposal Network (RPN), which is part of
the grasp detection branch. L, defines the regression loss for the box coordinates (x,y, w, k)
and L,,, defines the classification loss for the grasp orientation 6. We refer to [3] for addi-
tional information about the RPN and corresponding loss Lgpy. The grasp orientation loss
L, 18 defined as | |
—_— ‘o _ )

Lot R r;+ log st R r;f log s7®. 5)
Note that R = R4+ UR_ is the set of valid and invalid region proposals, which are the output
of the RPN. Each region proposal r consists of the parameters (x,,y,, w,, h,), which represent
an initial axis-aligned bounding box. The score function s,° defines the probability that the
region proposal belongs to the ground truth orientation class cg, and s? defines the probability
that the region proposal is invalid. Note that we discretized the grasp orientation 6 into 18
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intervals with equal length, where each interval is represented by its mean value, resulting
in cg € {1,...,18} for the orientation classes. The additional class ¢ is used to describe the
region proposals which may be invalid.

For bounding box regression we use the loss Ly, defined as

Lipox = Z smoothy, (t; —1]), (6)

ie{x,y,w,h}

with the smooth;, norm defined in [6]. The correction factors #; are calculated by the grasp
detection head, and £ represent the offset between ground truth grasp candidates and a re-
gion proposal r. The correction factors #; and the corresponding region proposal parameters
(xy,yr, Wy, hy), are then used to calculate the final box parameters (x,y, w, h).

Semantic segmentation loss. We denote / = {1,...,N} as the set of semantic segmentation
classes, with N = 2 for foreground/background segmentation. The semantic segmentation
loss is a weighted per-pixel loss [5] defined as

Lsem = —ZW,;k logPj i (Yjx), @)
Jk

where (j,k) correspond to the pixel position in the image. Let Y;; € [ be the semantic
segmentation ground truth and P; ;, the predicted probability of the semantic segmentation
head for the same pixel, to be assigned to one of the semantic classes, respectively. The
weights w; ;. select the 25% of the lowest predicted probabilities P; for all (j,k) using
Wik = W4—H, and w;; = 0 otherwise, whereas (W x H) is the spatial image resolution.
Instance segmentation loss. The instance segmentation is defined as binary segmentation
problem, given that we want to calculate a specific object instance mask related to the point
proposal p(x,y). We use the Normalized Focal Loss as proposed in [7], which is defined as

1
gt !~ Q) "ee 0 ®)
J»

Einst = -
whereas Q(M) = Y 1 (1 — Qj )" defines the total weight of the values for all pixels in the
image, with Q;, the predicted probability of the instance selection network for the correct
segmentation output at position (j,k), and the focusing parameter ¥ > 0. The Normalized
Focal Loss concentrates on pixels that are misclassified by the network, in contrast to the
binary cross entropy loss, which pays more attention to pixels that are correctly classified (as
shown in [4]).

Additional Visualizations for OCID_grasp Experiment

Figure 1 shows comparison of qualitative results for [1] and (ours), corresponding to Sec-
tion 5.2 in the paper. Please note the differences: 1) [1] performs semantic segmentation,
where each color in the visualization corresponds to a certain object class, whereas multiple
object instances of the same class share the same color. This makes it impossible to distin-
guish between multiple instances of the same class. (Ours) performs class-agnostic instance
segmentation for multiple graspable objects, where each instance has a separate color, not
related to classes. 2) Because [1] filters grasp candidates using the semantic segmentation,
it is only possible to select one grasp candidate per class. Again, if multiple instance of one
object class are in the scene, this algorithm fails to detect grasp candidates for more than
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Detected grasp candidates using Inst. Segmentation of graspable

RGB input image (ours) ojbects using (ours)

Detected grasp candidates using
1

Sem. Segmentation using [1]

Figure 1: Comparison with previous state-of-the-art method for joint grasp detection and
segmentation. As the method of [1] selects grasp candidates related to the semantic seg-
mentation, they are missing out on grasp candidates if multiple instances of the same object
class are present in the scene (e.g. for classes banana and orange in row one, column two).
Furthermore, the semantic segmentation in [1] makes it impossible to distinguish between
multiple object instances of the same class, whereas (ours) performs class-agnostic instance
segmentation. Failure cases for (ours) are if no grasp candidate is detected for a graspable
object, see dark bowl in second row, fourth column. Note that the colors for the seg. results
in [1] and (ours) are independent and have no correlation.

one instance. (Ours) on the other hand, is free of restrictions regarding object classes, and
is therefore able to predict grasp candidates for multiple instances of the same class. Failure
cases for our method are if no grasp candidate is predicted for a graspable object (as one
can see in Figure 1 second row, fourth column, no grasp candidate for bowl detected), which
then results in no instance segmentation mask, as the center of the grasp candidate is used as
point proposal for instance segmentation.

Technical Details for Real-World Robotic Picking

The system used for the real-world robotic picking experiments is a scaled hydraulic for-
est crane (see left-hand drawing in Figure 2). These cranes usually are human-operated to
move tree logs from one place to another. To allow for automatic pick-and-place operation,
we added electrically operated hydraulic valves to each joint of the crane in combination
with a programmable logic controller (PLC). Linear or angular displacement sensors with
electrically operated hydraulic valves make the automatic control of the crane possible.

The right-hand diagram of Figure 2 shows the overall structure of the system. The top
left block includes the detection of feasible grasp candidates (see method in Section 4 in
main paper). The best grasp candidate is projected into 3D and sent to the so-called mo-
tion sequencer client ( Figure 2 top right) through a ROS message. This message contains
the grasping 3D position, its orientation, the log’s diameter and centroid. With this data
(transformed from detection to the kinematics frame) and the periodically arriving sensor
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Figure 2: The drawing, left image, shows the crane used in real-world experiments and
important reference frames; An overview of the system structure can be seen in the right
image.

measurements from the PLC, the motion sequencer client can calculate the configuration of
the joints needed to reach the requested point. A minimization method uses forward kine-
matics of the crane and the desired position and orientation to calculate the required joint
configuration.

The PLC receives the calculated joint configuration via Ethernet. On the PLC, each joint
has a proportional control loop with the received configuration as desired position/orientation,
the measurements as current position/orientation, and the valve opening as output. The con-
trol loop interpolates linearly between the old and new desired setpoint, to avoid sudden
motions and unwanted pressure spikes during setpoint changes. The motion sequencer client
checks through the reported configuration if it matches the new setpoint. One needs to be
aware that the hydraulics combined with a proportional control loop limits the precision in
positioning, compared to just electrical joint-based systems.

Always heading directly for the detected grasping pose might result in erroneous behav-
ior or worst-case crashes of the crane with its surroundings. Therefore, the motion sequencer
client generates a sequence of so-called waypoints, based on the received grasp candidate,
to ensure repeatability and safety. This sequence guarantees that side-ways motions are only
done while high above the ground and only going down to pick up a log or put it into the con-
tainer. The grasper itself limits grasping complexity as it is bulky because of its application,
compared to other pick-and-place robotic manipulators. Thus, one needs to take care of the
distance between logs. The grasper only opens as wide as the log’s diameter plus safety mar-
gin to improve grasping performance in cluttered scenarios. A ROS service on the grasping
detection, which triggers a prediction, allows the automation of the experiment. The motion
sequencer client calls this service to start a new sequence. This procedure continues until no
grasp candidates are detected.
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