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1 Experimental setup

1.1 Data set
We evaluate our method on the task of privacy-preserving brain MRI segmentation. Two
datasets are used in our experiments: the Parkinson’s Progression Marker Initiative (PPMI)
dataset [6] and MRBrainS13 Challenge [7] dataset. The first dataset, which contains longitu-
dinal data, was considered for training the Siamese discriminator to recognize same-subject
brain segmentations. The second one is used to evaluate the ability of our generator trained
on PPMI to generalize to another dataset.
PPMI This dataset contains T1 3D MRI scans from 350 subjects, acquired on 3T Siemens
scanners from 32 different clinics. Each subject has 1–2 baseline acquisitions and 1–2
follow-up acquisitions a year later, resulting in a total of 773 images. MRI scans were
registered onto a common MNI space and then reshaped to a size of 72× 96× 80 voxels
with a 2× 2× 2 mm3 resolution, in order to fit the memory capacity of our hardware.

We split the data based on subjects, using 75% of subjects (269 subjects, 592 images)
for the training set and remaining 25% (81 subjects, 181 images) for the testing set. As
in [4], for the segmentation task, we used the labels generated automatically by Freesurfer
for five classes: internal cerebrospinal fluid (CSF int), external cerebrospinal fluid (CSF
ext), white matter (WM), gray matter (GM), and nuclei. To set the hyperparameters of our
system, we followed a 5 fold cross-validation strategy on the training images. Once these
hyperparameters were selected, we retrained the system on the entire training set and report
results from the test set.
MRBrainS This second dataset comprises T1 3D MRI scans of 5 subjects obtained with a
3T Philips Achieva scanner, along with ground-truth segmentation masks for three classes:
WM, GM and CSF. Note that the MRBrainS 2013 Challenge included data for 15 additional
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Figure 1: Network architecture of the generator.

subjects, however ground-truth segmentation was not provided for these subjects. As for
PPMI, the MRBrainS images were registered to the MNI space using ANTs [2]. Since it has
only 5 images, we directly report the cross-validation performance for this dataset.

1.2 Evaluation Metrics
We resort to the Dice similarity coefficient (DSC) to measure the segmentation accuracy of
the different methods. Furthermore, to evaluate the methods’ ability to obfuscate subject
identity, we follow the retrieval-based analysis of [4] where an attacker tries to recover the
identity of a subject by matching an encoded image or segmentation map against an existing
database. In this analysis, mean average precision (mAP) is employed to measure the re-
identification accuracy [5]. Let xi,yi be an image and its corresponding segmentation map
of a given subject with identity id(i), and denote as Tid(i) the set of images and segmentation
maps of this subject. Also, let Sk

i be the set of k most similar images to xi or segmentations
to yi according to a given re-identification approach. The precision at cut-off k is defined as(

precision@k
)

i =
Tid(i)∩Sk

i

k
(1)

Considering each proxy test image / segmentation as a separate retrieval task where one
must find other proxy images from the same person, the average precision (AP) for im-
age / segmentation i is given by

APi =
1

∑ j 6=i si j

N

∑
k=1

(
precision@k

)
i · s̃ik, (2)

where s̃ik is a label indicating if the k-th most similar image or segmentation is from the same
subject as i or not. mAP is then the mean of AP values computed over all test examples. We
also resort to the F1-score to evaluate the performance of the Siamese discriminator.

1.3 Implementation details
We used a U-Net architecture with 3D convolution kernels for the segmentation network and
the modified 3D U-Net model of Fig. 1 for the transformation generator. For all experiments,
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we trained the system for 100 epochs with the Adam optimizer and a learning rate of 10−4.
The balancing weights in Eq. (2) of the main paper were set to λ1 = 0.5, λ2 = 1, λ3 = 10
and λ4 = 1. The system was implemented in Pytorch, and experiments were performed
on Intel(R) Core(TM) i7-6700K 4.0GHz CPU with a 16 GB NVIDIA Tesla P100 GPU.
Additional implementation details can be found in the supplementary material. The code
will be made public upon acceptance of this paper.

Deformed image Deformed segmentation map

Reconstructed image Reconstructed segmentation map

Figure 2: Reconstructed image and segmentation map of a deformed brain without the in-
vertibility loss of Eq. (5) in the main paper.

Artifact deformed image Discontinuity flow-field

Figure 3: Artifact in the deformed image when train without smoothness.

Deformed image Deformed segmentation map

Figure 4: Weak distortion when train without diversity loss.

2 Link to mutual information minimization
Following a similar approach as in [4], we can show that optimizing the adversarial loss in
Eq. (4) of the main manuscript amounts to minimizing the mutual information (MI) between
encoded images and a variable representing subject identity.

The link between MI and the adversarial training of a discriminator was first shown
in the InfoGAN paper [3], where a generative adversarial network conditioned on a set of
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latent variables (e.g., object class, pose, orientation, etc.) is trained to maximize the MI
between the generated image x and the latent variables C. This theoretical result relied on
the principle of variational MI maximization [1], in which a lower bound on MI is derived by
approximating a conditional distribution P(C |x), intractable to compute, with an auxiliary
distribution Q(C |x).

Here, a similar approach is used to show that optimizing a discriminator D in a mini-max
fashion helps remove information about subject identity. However, since our model is based
on a Siamese discriminator, not a standard classifier, a slightly different strategy is needed.
In our case, C is a binary variable that equals 1 if two transformed images xd

1 , xd
2 are from

the same subject, else it equals 0. We want to show that optimizing Eq. (4) minimizes the
MI between these images and variable C, denoted as I

(
xd

1 ,x
d
2 ; C

)
. As described in Section

3.2.2 of the main manuscript, we found that the segmentation ŷd predicted from the trans-
formed xd provided as much information about the subject identity as xd . Thus, we have that
I
(
xd

1 ,x
d
2 ; C

)
≈ I
(
ŷd

1 , ŷ
d
2 ; C

)
and can instead focus on minimizing the second term:

I
(
ŷd

1 , ŷ
d
2 ;C
)
= H

(
C
)
− H

(
C | ŷd

1 , ŷ
d
2
)

(3)

= H
(
C
)
+ Eŷd

1 ,ŷ
d
2∼P(ŷd

1 ,ŷ
d
2)

[
EC′∼P(C | ŷd

1 ,ŷ
d
2)

[
logP

(
C′ | ŷd

1 , ŷ
d
2
)]]

(4)

= H
(
C
)
+ EC∼P(C), ŷd

1 ,ŷ
d
2∼P(ŷd

1 ,ŷ
d
2 |C)
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EC′∼P(C | ŷd

1 ,ŷ
d
2)
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logP

(
C′ | ŷd

1 , ŷ
d
2
)]]

(5)

where H(X) being the Shannon entropy of random variable X . Since P(C | ŷ, ŷ′) is unknown
and computationally untractable, we approximate it with an auxiliary distribution Q(C | ŷ, ŷ′),
giving the following lower bound:

I
(
ŷd

1 , ŷ
d
2 ;C
)
= H

(
C
)
+ EC∼P(C), ŷd

1 ,ŷ
d
2∼P(ŷd

1 ,ŷ
d
2 |C)

[
(6)

EC′∼P(s|ŷd
1 ,ŷ

d
2)

[
DKL
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+ logQ
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d
2∼P(ŷd
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(8)

Using the fact that, for random variables X , Y and function f (x,y), Ex∼X ,y∼Y |x
[

f (x,y)
]
=

Ex∼X ,y∼Y |x,x′∼X |y
[

f (x′,y)
]

[3], we then get

I
(
ŷd

1 , ŷ
d
2 ;C
)
≥ H

(
C
)
+ EC∼P(C), ŷd

1 ,ŷ
d
2∼P(ŷd

1 ,ŷ
d
2 |C)

[
logQ(C | ŷd

1 , ŷ
d
2)
]

(9)

= H
(
C
)
+ EC∼P(C), k1,k2∼P(k1,k2|C), ŷd

1∼P(ŷd
1 |k1), ŷd

2∼P(ŷd
2 |k2)

[
logQ(C | ŷd

1 , ŷ
d
2)
]

(10)

In the last equality, P(ŷd |k) is the distribution of segmentations for a subject identified by
k. We can sample from this distribution since the mapping from an input image x to the
transformed segmentation ŷd is deterministic.

The link between MI and the adversarial loss of our model then comes from using the
output of discriminator D as auxiliary distribution Q, and observing that Eq. (10) corresponds
to the minus the cross-entropy in the adversarial loss plus a constant (i.e., H(C)). Optimizing
the adversarial thus corresponds to minimizing an maximally-tight bound to MI.
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