
MANGALAM, GARG: ADAPTIVE MULTI ADVERSARIAL TRAINING 15

Appendix

CIFAR10 Experiments

BigGAN + AMAT Experiments
For the baseline we use the author’s official PyTorch implementation 1. For our experiments
on AMAT + BigGAN, we kept the optimizer as Adam [17] and used the hyperparameters
β1 = 0.0,β2 = 0.9. We did not change the model architecture parameters in any way. The
best performance was achieved with learning rate = 0.0002 for both the Generator and all the
Discriminators. The batch size for the G and all D is 50, and the latent dimension is chosen as
128. The initial value of Tt = 5 epochs, and after the first discriminator is added, Tt is increased
by 5 epochs every Tt epochs. The initial value of αt = 1.5, and it is increased by a factor of
3.5 every time a discriminator is added. To check whether to add another discriminator or not,
we use 10 exemplar images, 1 from each CIFAR10 class. While assigning datapoints to each
discriminator, we use an epsilon greedy approach. We chose ε = 0.25, where the datapoint
is assigned to a random discriminator with a probability ε . The number of discriminator(s)
updates per generator update is fixed at 4. We also use exponential moving average for the
generator weights with a decay of 0.9999.

SN-GAN + AMAT Experiments
We used the SN-GAN implementation from https://github.com/GongXinyuu/sngan.pytorch,
which is the PyTorch version of the authors’ Chainer implementation https://github.com/pfnet-
research/sngan_projection. We kept the optimiser as Adam and used the hyperparameters
β1 = 0.0,β2 = 0.9. The batch size for generator is 128 and for the discriminators is 64, and
the latent dimension is 128. The initial learning rate is 0.0002 for both generator and the
discriminators. The number of discriminator(s) updates per generator update is fixed at 7. The
initial value of Tt = 2 epochs, and is increased by 1 epoch after every discriminator is added.
αt is initialized as 1.5, and is increased by a factor of 1.3 after a discriminator is added, till 20
epochs, after which it is increased by a factor of 3.0. These larger increases in αt are required
to prevent too many discriminators from being added over all iterations. We chose ε = 0.3,
where the datapoint is assigned to a random discriminator with a probability ε . We use 10
exemplar images, 1 from each CIFAR10 class.

ResNet GAN: We use the same ResNet architecture as above, but remove the spectral
normalization from the model. The optimizer parameters, learning rate and batch sizes remain
the same as well. The number of discriminator(s) updates per generator update is fixed at 5.
The initial value of Tt = 10 epochs, and is increased by 5 epochs after every discriminator
is added. αt is initialized as 1.5, and is increased by a factor of 2.0 after a discriminator is
added. We chose ε = 0.2, where the datapoint is assigned to a random discriminator with a
probability ε . We use 10 exemplar images, 1 from each CIFAR10 class.

ResNet WGAN-GP: In the above model, the hinge loss is replaced by the Wasserstein
loss with gradient penalty. The optimizer parameters, learning rate and batch sizes remain
the same as well.The number of discriminator(s) updates per generator update is fixed at 2.
The initial value of Tt = 5 epochs, and is increased by 5 epochs after a discriminator is added.
αt is initialized as 1.5, and is increased by a factor of 3.0 after a discriminator is added. We

1https://github.com/ajbrock/BigGAN-PyTorch

Citation
Citation
{Kingma and Ba} 2014

https://github.com/GongXinyuu/sngan.pytorch
https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection
https://github.com/ajbrock/BigGAN-PyTorch


16 MANGALAM, GARG: ADAPTIVE MULTI ADVERSARIAL TRAINING

chose ε = 0.2, where the datapoint is assigned to a random discriminator with a probability ε .
We use 10 exemplar images, 1 from each CIFAR10 class. These images are chosen randomly
from each class, and may not be the same as the ones for other CIFAR10 experiments.

DCGAN + AMAT Experiments

We used standard CNN models for our DCGAN as shown in Table 7. We use Adam optimizer
with hyperparameters β1 = 0.0,β2 = 0.9. The learning rate for generator was 0.0002, and
the learning rate for the discriminator(s) was 0.0001. The number of discriminators updates
per generator was fixed at 1. The initial value of Tt = 4 epochs, and is increased 5 epochs
after a discriminator is added. αt is initialized as 1.5 and is increased by a factor of 1.5 every
time a discriminator is added. We chose ε = 0.3, where the datapoint is assigned to a random
discriminator with a probability ε . We use 10 exemplar images, 1 from each CIFAR10 class.

Stacked MNIST Experiments

Stacked MNIST provides us a test-bed to measure mode collapse. A three channel image is
generated by stacking randomly sampled MNIST classes, thus creating a data distribution if
1000 modes. We use this dataset to show that, when generator oscillates to a different set of
modes, catastrophic forgetting is induced in discriminator and this prevents the generator to re-
cover previous modes. To study this phenomenon, we need to measure the correlation between
number of modes the generator covered and the catastrophic forgetting in the discriminator.
Measuring the number of modes is straight forward, we can by simply classify each channels
of the generated images using a MNIST pretrained classifier to find its corresponding mode.
However, to measure catastrophic forgetting in the discriminator, we use a proxy setting,
where we take the high-level features of the real images from the discriminator and train a
simple classifier on top of that. The discriminative quality of the features taken from the
discriminator indirectly measure the ability of the network to remember the modes. Finally,
as a control experiment we randomize the weights of the discriminator, and train a classifiers
on the feature taken from randomized discriminator. This is to show that, extra parameters
in the classifier does not interfere our proxy measure for the catastrophic forgetting. Finally,
we train a DCGAN with a single discriminator, and a similar DCGAN architecture with our
proposed AMAT procedure, and measure the number of modes covered by the generator and
the accuracy of the discriminator.

A Fair comparison on discriminator capacity

Our AMAT approach incrementally adds new discriminators to the GAN frameworks, and
its overall capacity increases over time. Therefore, it is not fair to compare a model with
AMAT training procedure with its corresponding the single discriminator model. As a fair
comparison to our AMAT algorithm, we ran single discriminator model with approximately
matching its discriminator capacity to the final AMAT model. For example, SN-GAN with
AMAT learning scheme uses 4 discriminators at the end of its training. Therefore we use a
discriminator with four times more parameters for the single discriminator SN-GAN model.
This is done by increasing the convolutional fillters in the discriminator. Table 6 shows that,



MANGALAM, GARG: ADAPTIVE MULTI ADVERSARIAL TRAINING 17

Scores DCGAN ResNetGAN WGAN-GP SN-GAN BigGAN

#of Param of D 1.10 M 3.22 M 2.06 M 4.20 M 8.42 M
w/o AMAT IS 5.97 ± 0.08 6.59 ± 0.09 7.72 ± 0.06 8.24 ± 0.05 9.14 ± 0.05

FID 34.7 36.4 19.1 14.5 10.5

#of Param of D 1.02 M 3 × 1.05 M 2 × 1.05 M 4 × 1.05 M 8.50 M
+ AMAT IS 6.32 ± 0.06 8.1 ± 0.04 7.80 ± 0.07 8.34 ± 0.04 9.51 ± 0.06

FID 30.14 16.35 17.2 13.8 6.11

Table 6: Increasing network capacity alone does not capture more modes. Even after the
discriminator capacity is matched, single discriminator GANs do not perform as well as
multi-adversarial GANs with AMAT learning

even after matching the network capacity, the single discriminator models do not perform
well as compared to our AMAT learning.

Synthetic Data Experiments
We add flow-based non-linearity (Algorithm 1) to a synthetic 8-Gaussian ring dataset. We
chose K = 5 as our non-linearity depth and chose a randomly initiated 5 layer MLP as our
non-linear functions. We use an MLP as our GAN generator and discriminator (Table 8).
We use the Adam optimizer with hyperparameters β1 = 0.0,β2 = 0.9. The learning rate
for the generator and discriminator was 0.0002. The number of discriminator updates per
generator update is fixed to 1, and the batch size is kept 64. The initial value of Tt = 5 epochs,
and is increased by 10 every time a discriminator is added. αt is initialized as 1.5, and is
increased by a factor of 1.5 after a discriminator is added for the first 50 epochs. After that αt
is increased by a factor of 3. We chose ε = 0.25, where the datapoint is assigned to a random
discriminator with a probability ε . 1 random datapoint from each of the 8 modes is selected
as the exemplar image.

Figure 4 shows the difference in performance of a standard MLP GAN (8 and the
same MLP GAN with AMAT. The GIF on the lefts shows a cyclic mode collapse due
the discriminator suffering from catastrophic forgetting. The same GAN with is able to
completely mitigate catastrophic forgetting with just 2 discriminators added during training,
on a 728-dimensional synthetic data.



18 MANGALAM, GARG: ADAPTIVE MULTI ADVERSARIAL TRAINING

z ∈ R128 ∼N (0, I)

dense→ 4×4×512

4×4, stride=2 deconv. BN 256 ReLU

4×4, stride=2 deconv. BN 128 ReLU

4×4, stride=2 deconv. BN 64 ReLU

3×3, stride=1 conv. 3 Tanh

Generator

x ∈ R32×32×3

3×3, stride=1 conv. 64 lReLU
4×4, stride=2 conv. 64 lReLU

3×3, stride=1 conv. 128 lReLU
4×4, stride=2 conv. 128 lReLU

3×3, stride=1 conv. 256 lReLU
4×4, stride=2 conv. 256 lReLU

3×3, stride=1 conv. 512 lReLU

dense→ 1

Discriminator

Table 7: DCGAN Architecture for CIFAR10

z ∈ R25 ∼N (0, I)

dense→ 128, BN 128 ReLU

dense→ 128, BN 128 ReLU

dense→ 512, BN 512 ReLU

dense→ 1024, BN 1024 ReLU

dense→ 2, Tanh

Generator

x ∈ R2

dense→ 128 ReLU

dense→ 512 ReLU

dense→ 1 Sigmoid

Discriminator

Table 8: MLP architecture for Synthetic Dataset

Figure 4: GAN training visualization: (Figure contains animated graphics, better viewed in Adobe
Acrobat Reader) Training trajectories of an MLP in table 8 (leftmost panel) and an MLP trained with
our AMAT procedure (Algorithm 3) (rest three panels) on a 784-dimensional synthetic dataset. Green
dots represent real samples and the blue dots represent the generated samples. The vanilla GAN samples
are overlayed against discriminator’s output heatmap where the warm yellow color indicates a high
probability of being real and cold violet indicates fake. In the AMAT + GAN panels, the discriminator
landscapes are shown separately for both discriminators with the second discriminator being spawned
at iteration 4000 (Algorithm 2). The 2D visualizations of the 784D data space is facilitated by our
synthetic data generation procedure (Algorithm 1).


	anm3: 
	3.47: 
	3.46: 
	3.45: 
	3.44: 
	3.43: 
	3.42: 
	3.41: 
	3.40: 
	3.39: 
	3.38: 
	3.37: 
	3.36: 
	3.35: 
	3.34: 
	3.33: 
	3.32: 
	3.31: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


