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1 Comparison with ML with C-NP as Source Domain

To ensure a comprehensive comparison with [8], we present additional experimental results
using the new protocol of CUHKO3 [6], C-NP, as a source domain, which were omitted
from the main section due to space constraints. Table | summarizes each new experiment,
detailing the source domains used, target domain and ID/image counts for each.

Sources \ Target \ Combined-Src-1Ds \ Combined-Src-Images \ Target-Images
C-NP+D+MS | M 2,510 56,508 19,281
C-NP+M+MS | D 2,559 52,922 19,889
C-NP+D+M MS 2,220 36,823 93,820

Table 1: Details for experiments involving C-NP in Sources.

Table 2 compares our DEX with [8]. Under this different experimental setting, our method
continues to surpass leading state-of-the-art methods by significant margins.

2 Detailed Differences between DEX and ISDA

Our method is inspired by ISDA [7], a recent work on deep feature augmentation. Still, it is
significantly different as we found it impractical to apply it, originally proposed for image
classification tasks, directly to multi-source domain generalization for Person RelD (DG-
RelID). In the original formulation, a different covariance matrix is stored and updated for
each class corresponding to person identities in ReID. However, in DG-ReID the number of
classes grows large when multiple source datasets are merged for training, imposing a strong
memory overhead as each matrix takes up O(n?) space with feature dimension n = 2048 in
our case. In our case, the experiment with the lowest number of training classes is already
close to 2,500, making direct application of [7] infeasible.

For problems with a large number of classes such as ImageNet [1], ISDA approximated
the class-conditional covariance by storing just the matrix diagonals, reducing the per-class
memory overhead to O(n) while still reaping the benefits. However, even with this approx-
imation, using a class-conditional approach could not consistently outperform our baseline
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Market-1501

Sources Method Rank-1 AP
DualNormys 76.5 48.5
QAConvs, 68.6 39.5

C-NP+D+MS | ML (ResNet-50) | 76.5 51.1
M3L (IBN-Net50) | 78.3 52.5
DEX (Ours) 79.7 533

DukeMTMC-relD

Sources Method Rank-1 AP
DualNormsg 66.1 48.8
QAConvs 64.9 434

C-NP+M+MS | ML (ResNet-50) 67.1 48.2
M3L (IBN-Net50) | 67.2 48.8

DEX (Ours) 72.1 53.5

MSMT17_V2

Sources Method Rank-1 AP
DualNorms 344 13.5

QAConvs 29.9 10.0

C-NP+D+M | M3L (ResNet-50) 32.0 13.1
M3L (IBN-Net50) | 37.1 154

DEX (Ours) 42.7 17.9

Table 2: Comparison of our DEX against the most recent state-of-the-art DG Person RelD,
for the experiments that use CUHK-NP in Sources.

model. Looking deeper, we believe this is because DG-RelD datasets have far fewer sam-
ples per class compared to those used in the original work, making estimation of per-class
covariance matrices unstable. Datasets used in [7] have 500 samples per class in the case
of CIFAR-100 and 5000 samples per class in CIFAR-10 [4]. In ImageNet [1], a majority
of the classes have 1300 samples each, with the lowest being 732. In stark contrast, the
median samples-per-identity is between 10 and 25 for RelD, over an order of magnitude
smaller. Table 3 shows a detailed comparison between the dataset statistics of their datasets
and our RelD datasets. Such drastically different distributions indicate that class-conditional
covariances may not be the most stable solution.

3 Model Training Details

In this section we describe the full details of our training method.

3.1 Backbone model

We use an ImageNet [1] pre-trained ResNet-50 [2] with instance normalization applied on
the first three out of four Bottleneck blocks, as prescribed in DualNorm [3]. The final layer
stride is reduced to 1 (originally 2). A batch normalization layer with no bias is applied to
the final layer features [3].
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Dataset(s) | Mean | Median [ Min | Max
CIFAR-10 5000 5000 5000 | 5000
CIFAR-100 500 500 500 500
ImageNet [1] 1281.2 1300 732 | 1300
Market-1501 (M) 17.2 15 2 72

DukeMTMC-relD (D) 23.5 20 6 426
CUHKO03 (C) 9.6 10 6 10

MSMT17_V2 (MS) 30.8 25 6 392
C+D+MS 20.0 13 6 426
C+D+M 15.1 10 2 426
C+M+MS 18.6 10 2 392
D+M+MS 24.9 20 2 426

Table 3: Comparison of samples per class between the datasets used in previous work on
deep feature augmentation [7] and those from Person ReID. RelD datasets have far fewer
samples per class, making estimation of class-conditional covariance matrices unstable.

3.2 Loss functions

For regularization, the softmax loss Ly, applies label smoothing with € = 0.1. The triplet
loss is defined as such:

Lo = Z [S(men) - 5(Xa,Xp) + ﬂ+

a,p;n

where [-]; = max(-,0), (Xa,Xp,Xn) refer to the triplets (anchor, positive, negative) that are
found in the batch, ¥ = 0.3 is the triplet margin, and J is a metric; in our case, we use
Euclidean distance. Our batch sampling scheme follows [5], selecting k = 4 samples per
PID in the batch to ensure sufficient triplets for training. The center loss is defined as such:

m
Leen = ZHXi _cyi||2
i=1

where i indexes a batch size of m, y; is the class label for x; and ¢ are the class centroids, up-
dated dynamically during training. To recap, the overall loss function for training a baseline
model without DEX is:

['base = ﬁsoft »Csoft + ﬁtri»ctri + ﬁcen »Ccen

with By =1, Bri = 1, Been =5 % 10~*. Applying DEX or DEXLite, the overall loss then
changes to:

Loveratt(t) = Lpex pextite(M) + BrriLeri + BeenLeen

with the strength of augmentation tempered by epoch ¢ as described in the main paper.

3.3 Input pre-processing

We resized the input to [384,128], pad it 10 pixels around with zeros and crop out [384,128].
We then apply a horizontal flip to the image with probability p = 0.5 and random-erasing
(RE) augmentation with a probability p = 0.1.
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3.4 Other training details

We train for 60 epochs (7" = 60) with a batch size of 32 using the Adam optimizer, linearly
warming up the learning rate 1 from 0 to 1.75 x 10~* in 10 epochs. Afterwards, 7 is reduced
by a factor of 0.1 at epochs 30 and 55.
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