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CAFENet: Class-Agnostic Few-Shot Edge
Detection Network (Supplementary Material)
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1 Additional Experimental Setup

In this section, we provide detailed information about experimental setup. We implement our
framework using the Pytorch library and adopt Scikit-learn library to construct the precision-
recall curve and compute average precision (AP). For the encoder, ResNet-34 pretrained on
ImageNet is adopted. All parameters except the encoder parameters are learned from scratch.
The entire network is trained using the Adam optimizer with weight decay regularization.
In both experiments on FSE-1000 and SBD-5i, we use a learning rate of 10−4 and an l2
weight decay rate of 10−2. For FSE-1000 experiments, the model is trained with 40,000
episodes and the learning rate is decayed by 0.1 after training 38,000 episodes. For SBD-5i

experiments, 30,000 episodes are used for training, and the learning rate is decayed by 0.1
after training 28,000 episodes. Higher shot training is employed in 1-shot experiments for
both datasets. In every experiment of our paper, single NVIDIA GeForce GTX 1080ti GPU
is used for computation.

We adopt ImageNet pretrained ResNet-34 with 64-128-256-512 channels for each resid-
ual block from [link] as the encoder. To construct skip architecture, we employ the bottle-
neck block of ResNet as post-processing blocks S(0) ∼ S(4). Each bottleneck block consists
of two 1x1 convolutional layers and one 3x3 convolutional layer with an expansion rate of
2. Dropout with a ratio of 0.25 is applied to the end of each bottleneck block. For the ASPP
Module in front of S(3), we adopt dilation rate of 1,4,7,11. Hyperparameters λ1,λ2,λ3 in
L f inal are set to 0.1, 1, 1, respectively. The learnable temperature parameter τ is initialized
to 10. For the learning rate, we apply learning rate ten times smaller for the pretrained en-
coder network and twenty times larger learning rate for the decoder network. For the decoder
side, each decoder block is composed of three consecutive 3x3 convolutional layers, and a
dropout with the ratio of 0.25 is again located at the end of each layer. During meta-training
of CAFENet, we set the number of query samples in training episodes to be 5 for FSE-1000
and 5 for SBD-5i. During training, we adopt data augmentation with random rotation by mul-
tiples of 90 degrees for both SBD-5i and FSE-1000. We additionally apply zero-padding on
data of SBD-5i to become 512×512, both in training and evaluation. No such zero-padding
is performed on images in FSE-1000 since they are already square-shaped. In evaluation, we
employ the average_precision_score function of Scikit-learn library to measure the Average
Precision (AP) score. We compute the AP score for each image and use the average score
as a measure of overall performance. For the Maximum F-measure (MF) score, we measure

c© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html#resnet34
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image segmentation label edge label image segmentation label edge label

Figure 1: Result of edge label generator.

true positives (TP), false positives (FP) and false negatives (FN) at every 0.01 threshold in-
tervals for each image, and accumulate the values for all images in 1000 test episodes. The
MF score is computed using the accumulated TP, FP, and FN values.

2 Label Generator

2.1 Edge Label Generator
Algorithm 1 generates the edge labels from the segmentation labels. The edge label generator
finds the regions where the pixel value of a segmentation label drastically changes, and
determines the pixels in the regions as the boundary. Note that the pixels at the border of the
image are also determined as the boundary.

Algorithm 1 Edge Label Generation
Input: Segmentation label M of an image
Output: Edge label y of an image.

y← 0W×H . Initialize y as zero matrix having same shape with M
for (h,w) in (1,1),...,(H,W ) do . H/W is height/width of the image

if Mh,w = 1 then
for (a,b) = (-r,-r),...,(r,r) do . radius r determines thickness of edge

if Mh+a,w+b = 0 then
yh,w← 1 . 0/1 means non-edge/edge pixel, respectively
break

else if (h+a < 0) or (h+a > H) or (w+b < 0) or (w+b >W ) then
yh,w← 1
break

return y . Return label annotation

2.2 Segmentation Label Generator
Algorithm 2 generates the segmentation label from the edge label. Before the label gen-
eration, the pixels are divided into several groups based on boundary labels. We employ
the Breadth-First Search (BFS) algorithm and divide the pixels into groups {G1,G2, ...,Gn}.
The segmentation label generator of Algorithm 2 classifies these groups into foreground and
background. First, the algorithm sweeps each column and row to count the number of pixel
value changes in edge label. If there are certain numbers of changes, the algorithm again
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image edge label marking result 𝑇 pixel groups segmentation label

Figure 2: Result of segmentation label generator.

sweeps the column or row and record the location of foreground pixels and mark the fore-
ground pixels in the column or row of matrix T . Based on pixel groups {G1,G2, ...,Gn}, the
marking results in T are then divided into pixel value groups {T 1,T 2, ...,T n}. The probabil-
ity that each group Gi belongs to the foreground is calculated as the mean of pixel values T i.
The groups with probability above the threshold λ are determined as the foreground groups,
and the pixels belonging to foreground groups are marked as foreground pixels. We set the
threshold value λ at 20/255.

3 Details on Datasets

3.1 FSE-1000

We build FSE-1000 using an existing few-shot segmentation dataset, FSS-1000. We extract
the boundary labels from segmentation annotations using Algorithm 1. In the light of dif-
ficulty associated with few-shot setting, we set the radius value r in Algorithm 1 to 3 in
FSE-1000 and extract edges of which thickness are around 2 ∼ 3 pixels on average. 1000
categories in FSE-1000 are split into 800 train classes and 200 test classes. For the detailed
class configuration, the reader may refer to our attachment on class configuration. Figure 1
visualizes the result of our edge extraction algorithm.

3.2 SBD-5i

SBD-5i is constructed based on the existing semantic edge detection dataset (SBD). Due to
the difficulty of few-shot setting and the noise of boundary annotations in original SBD, we
utilize thicker edges as done in FSE-1000. To extract thicker edge, we generate the segmen-
tation labels from the edge labels using Algorithm 2 instead of using existing segmentation
labels of SBD. Figure 2 shows the process of generating the segmentation label from the
edge label. From the generated segmentation labels, we extract edge labels using Algorithm
1 with a radius of 4, and thicknesses of the extracted edges lie between 3 ∼ 4 pixels on
average. This process allows us to train the proposed CAFENet using only the edge labels.

While all images in FSE-1000 are of the same size, images in SBD-5i have different
sizes. However, constructing the training episode as a mini-batch requires images with the
same size. Previous works on semantic edge detection typically apply random cropping to
deal with this issue. For the few-shot setting, however, random cropping severely degrades
informativeness of support set and consequently hinders learning. Alternatively, we utilize
the training examples zero-padded to 512× 512 to maintain the information of images as
much as possible.
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Algorithm 2 Segmentation Label Generation

Input: Edge label y of an image, pixel groups G1,G2, ...,Gn

Output: Segmentation label M of an image.
M,T ← 0W,H . Initialize M,T as zero matrix having same shape with y
for h = 1,...,H do . H is height of the image

cnt,mode← 0
for w = 1,...,W do . W is width of the image

if yh,w = mod(mode+1,2) then . Accumulate changes of pixel value
cnt← cnt +1
mode← mod(mode+1,2)

if mod(cnt,4) = 0 and cnt 6= 0 then . Check if there are FG pixels in the row
cnt ′,mode′← 0
for w′ = 1,...,W do . Find location of FG pixels in the row

if yh,w′ = mod(mode′+1,2) then
cnt ′← cnt ′+1
mode′← mod(mode′+1,2)

if mod(cnt ′,4) = 2 then
Th,w′ ← 1 . Record location of FG pixels in the row

for w = 1,...,W do . Repeat the same process for every column
cnt,mode← 0
for h = 1,...,H do

if yh,w = mod(mode+1,2) then
cnt← cnt +1
mode← mod(mode+1,2)

if mod(cnt,4) = 0 and cnt 6= 0 then
cnt ′,mode′← 0
for h′ = 1,...,H do

if yh′,w = mod(mode′+1,2) then
cnt ′← cnt ′+1
mode′← mod(mode′+1,2)

if mod(cnt ′,4) = 2 then
Th′,w← 1

for i = 1, ...,n do
T i← Th,w|(h,w)∈Gi

if mean(T i)≥ λ then . Check the probability that Gi belongs to foreground
Mh,w|(h,w)∈Gi ← 1 . 1 means a foreground pixel

else
Mh,w|(h,w)∈Gi ← 0 . 0 means a background pixel

return M . Return segmentation annotation
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Note that unlike Pascal-5i, we do not consider the division of training and test samples of
the original SBD dataset. As a result, the images in Dtrain might appear in Dtest with different
annotation from class in Ctest .

4 Ablation Studies on Few-Shot Segmentation Baselines
In the main paper, we utilize the combination of a few-shot segmentator and a non-parametric
edge detector as the baseline for few-shot edge detection. We use the few-shot segmenta-
tors of PANet and PMM, and the Sobel operator of OpenCV library as an edge detector.
In the Sobel operator, the kernel size is an important factor since thickness of the extracted
boundary is highly dependent on the kernel size. For fair comparison, we measure the per-
formances of PANet + Sobel and PMM + Sobel with various kernel sizes from 1 to 9. Tables
1 and 2 show experimental results of PANet + Sobel and PMM + Sobel on SBD-5i. Tables 3
and 4 show the results of PANet + Sobel and PMM + Sobel on FSE-1000. For the PANet +
Sobel method, we choose the kernel size of 3 that shows the best performances in all cases in
both dataset and report the results with a kernel size 3 in the main paper. For PMM + Sobel,
on the other hand, the best performance of each case is obtained from different kernel sizes.
For example, in SBD-5i, PMM + Sobel shows the best MF score with a kernel size of 3 and
shows the best AP score with kernel size of 1. Since it is impossible to select the optimal
kernel size for the PMM + Sobel baseline, we report the best results with different kernel
sizes for all cases instead of the results from a single optimal kernel size.

Metric kernel size SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

1 11.94 12.49 18.27 17.93 14.64 14.81 10.33 10.79 13.80 14.01
3 18.13 19.47 23.17 23.33 21.04 21.04 17.75 17.78 20.02 20.41
5 8.28 8.53 8.54 8.36 8.34 8.29 6.10 5.92 7.82 7.78
7 4.32 3.99 4.37 4.06 4.66 4.43 2.82 2.86 4.16 3.95
9 3.08 2.93 3.22 3.06 3.57 3.40 2.82 2.86 3.17 3.06

AP

1 11.35 11.63 14.83 14.11 12.33 11.75 9.33 9.20 11.96 11.67
3 11.56 11.52 14.78 14.10 12.40 11.84 9.46 9.29 12.05 11.69
5 5.38 5.29 5.54 5.00 5.78 5.63 4.56 4.44 5.32 5.09
7 2.66 2.22 2.63 2.33 2.89 2.60 1.98 1.94 2.54 2.27
9 1.62 1.51 1.70 1.56 1.78 1.74 1.44 1.47 1.64 1.57

Table 1: Experiment results of PANet+Sobel with various kernel size on SBD-5i. Both 5-shot (right)
and 1-shot (left) performances are considered. 1000 randomly sampled test episodes are used for

evaluation. MF and AP scores are measured by %

Metric kernel size SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

1 30.27 30.42 28.46 28.56 25.00 25.58 24.57 24.36 27.08 27.23
3 31.18 31.73 29.23 29.99 29.38 29.91 25.65 26.03 28.86 29.42
5 20.29 20.64 16.09 16.44 15.53 16.86 12.82 13.57 16.18 16.88
7 10.98 11.39 8.79 9.08 7.54 8.24 6.82 7.25 8.53 8.99
9 6.27 6.44 5.58 5.81 4.79 5.02 4.23 4.45 5.22 5.43

AP

1 22.77 23.26 20.21 20.76 19.85 20.38 17.56 17.94 20.10 20.59
3 22.14 22.74 20.45 20.48 19.17 20.09 17.86 17.81 19.91 20.28
5 13.91 14.15 12.08 12.07 10.30 11.01 9.34 9.65 11.41 11.72
7 7.17 7.43 6.18 6.38 4.66 5.08 4.57 4.83 5.65 5.93
9 3.62 3.76 3.32 3.48 2.61 2.72 2.38 2.52 2.98 3.12

Table 2: Experiment results of PMM+Sobel with various kernel size on SBD-5i. Both 5-shot (right)
and 1-shot (left) performances are considered. 1000 randomly sampled test episodes are used for

evaluation. MF and AP scores are measured by %
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Metric kernel size 1-shot 5-shot

MF
(ODS)

1 38.41 39.56
3 38.68 39.83
5 18.58 19.66
7 10.38 10.21
9 6.67 6.37

AP

1 31.14 31.81
3 28.37 29.28
5 12.77 13.53
7 6.72 6.55
9 3.66 3.38

Table 3: Experiment results of PANet+Sobel with various kernel size on FSE-1000. 1000 randomly
sampled test episodes are used for evaluation. MF and AP scores are measured by %

Metric kernel size 1-shot 5-shot

MF
(ODS)

1 31.04 35.25
3 32.31 36.53
5 32.39 31.88
7 26.86 22.97
9 12.74 11.19

AP

1 27.82 33.45
3 26.67 31.84
5 24.13 23.89
7 18.91 15.37
9 6.96 6.14

Table 4: Experiment results of PMM+Sobel with various kernel size on FSE-1000. 1000 randomly
sampled test episodes are used for evaluation. MF and AP scores are measured by %

5 Feature Matching Method for Segmentation

In CAFENet, we introduce a novel multi-split matching regularization (MSMR). During
meta-learning stage, MSMR divides the prototypes and query features into multiple sub-
vectors, and generates multiple segmentation predictions from the sub-vectors. The seg-
mentation losses are computed from the comparison between multiple prediction results and
ground truth, and used for training of the model. However, in MSMR, only the segmenta-
tion mask from the original high-dimensional feature vectors is utilized for edge prediction
and the multiple segmentation results from sub-vectors are not further utilized. The seg-
mentation mask from the original high-dimensional vectors is concatenated to the query
features and becomes input of the DAM and the edge detector in CAFENet. A natural
question arises: Can we utilize the multiple segmentation prediction results in edge predic-
tion? To answer this question, we provide additional experiment results with various feature
matching methods to generate the segmentation mask used for edge prediction in Tables
5 and 6. The method baseline refers to the original method of CAFENet using only the
segmentation prediction from the high-dimensional query feature and prototypes. On the
other hand, the average and weighted sum methods utilize the segmentation predictions
from low-dimensional sub-vectors with the prediction from high-dimensional vectors. The
method average generates the final segmentation mask by averaging the segmentation pre-
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Metric feature matching method SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

average 32.99 38.57 38.86 42.17 33.48 37.68 29.96 36.07 33.82 38.62
weighted sum 33.26 38.18 38.88 41.38 35.16 39.76 32.36 35.68 34.92 38.75
baseline 34.92 39.02 40.83 42.52 34.75 38.41 32.16 35.54 35.67 38.87

AP
average 28.47 34.27 33.84 37.78 27.85 32.52 24.42 30.24 28.65 33.70
weighted sum 28.96 34.17 34.49 38.31 30.01 34.66 26.46 30.02 29.98 34.29
baseline 31.29 35.41 35.95 38.92 29.32 33.41 25.89 29.73 30.61 34.37

Table 5: Comparison of different feature mating methods on SBD-5i. Both 5-shot (right) and 1-shot
(left) performances are considered. 1000 randomly sampled test episodes are used for evaluation. MF

and AP scores are measured by %

Metric feature matching method 1-shot 5-shot

MF
(ODS)

average 55.52 57.14
weighted sum 57.13 57.86
baseline 57.88 59.52

AP
average 56.42 58.53
weighted sum 57.56 58.76
baseline 58.78 60.93

Table 6: Comparison of different feature mating method on FSE-1000. 1000 randomly sampled test
episodes are used for evaluation. MF and AP scores are measured by %

dictions from low-dimensional feature splits and original high-dimensional feature vectors.
In the weighted sum method, the segmentation masks are combined using a weighted sum
with learnable weights. Tables 5 and 6 show the experiment results with SBD-5i and FSE-
1000 datasets, respectively. The experiment results show that the baseline method works
better than the other methods implying that the proposed multi-split matching method works
best when it is used as a regularization method.

6 Comparison of MSMR and Dropout

Among the well-known regularization methods, MSMR is similar to dropout regularization
in the sense that MSMR conducts learning using only part of the model. By doing so, we
can encourage each part of the model to make the best use of its learning power and ob-
tain the model with the better generalization capability. While dropout and MSMR share
the same spirit of using the fraction of the learning capability of the model, they differ in
how the model parameters are used during training. Dropout solves a single problem ran-
domly disabling some of the model parameters and excluding them from training. On the
other hand, proposed MSMR generates multiple small sub-problems by splitting a high di-
mensional vector into several low-dimensional sub-vectors, and solves the all sub-problems
simultaneously. Thus, the entire parameters are trained at the same time without any ex-
cluded parameters in MSMR.
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Metric K SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

1 34.29 38.67 39.67 41.75 33.31 35.82 31.22 33.91 34.62 37.54
2 33.49 38.45 40.54 42.25 33.93 37.82 30.81 35.66 34.69 38.55
4 34.92 39.02 40.83 42.52 34.75 38.41 32.16 35.54 35.67 38.87
8 33.29 37.82 41.24 42.32 34.35 38.29 30.16 33.66 34.76 38.02

AP

1 30.43 34.58 34.89 37.54 27.62 29.94 25.31 27.95 29.56 32.50
2 29.74 34.35 35.54 37.68 28.67 32.86 25.27 29.94 29.81 33.71
4 31.29 35.41 35.95 38.92 29.32 33.41 25.89 29.73 30.61 34.37
8 28.86 34.00 36.48 38.32 28.54 33.17 24.73 28.91 29.65 33.60

Table 7: Comparison of different numbers of vector splits K on SBD-5i under 1-way 5-shot setting.
Both 5-shot (right) and 1-shot (left) performances are considered

Metric Method SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Random 34.92 39.02 40.83 42.52 34.75 38.41 32.16 35.54 35.67 38.87
Deterministic 33.76 38.56 40.73 42.18 32.78 37.92 29.62 34.55 34.22 38.30

AP
Random 31.29 35.41 35.95 38.92 29.32 33.41 25.89 29.73 30.61 34.37
Deterministic 30.14 34.74 35.82 37.98 27.55 32.97 24.47 30.03 29.50 33.93

Table 8: Comparison of Ramdom spliting scheme with deterministic spliting on SBD-5i under 1-way
5-shot setting. Both 5-shot (right) and 1-shot (left) performances are considered

7 Additional Ablation Studies on MSMR

7.1 Number of vector splits
MSMR divides the high-dimensional feature into multiple low-dimensional splits. Table 7
shows the performance of proposed CAFENet with varying numbers of splits K. Comparing
the K = 1 case with other cases, we can see that applying MSMR regularization consistently
improves performance. We can see that K = 4 results in the best AP and MF performance.
The performance gain is relatively marginal when we divide the embedding dimension into
too small (K = 8) or too big (K = 2) a pieces.

7.2 Dimensional split via deterministic indices
In MSMR, high-dimensional feature vectors are randomly split into several feature sub-
vectors. We also analyze the performance of the deterministic spliting scheme: it contrasts
with MSMR, where the index to be used for each split is changed randomly every time. Table
8 shows that even when the same number of vector splits are considred, ramdomly sampling
indices used for split indeed improves the performance over the deterministic counterpart.
Deterministic spliting enforces a set of fixed projections from high-dimensional spaces to
lower-dimensional spaces. We speculate that this kind of fixed projections discard a lot of
information within each dimension and lead to the loss of expressive power.

8 Additional Qualitative Results
In Fig. 3, we illustrate the prediction results of the baseline, Seg, Seg + DAM, and Seg +
DAM + MSMR methods. For fair comparison, all methods share the same support set. Fig.
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3 clearly shows that the techniques proposed in CAFENet steadily improve the quality of
prediction.

image ground truth baseline Seg Seg + DAM Seg + DAM + MSMR

Figure 3: Qualitative comparison of ablation experiments


