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Figure 1: We show 3 pre-processed image sequences for our Sequential (Video) model, one
in each row. With T=3 set for our experiments, sequence length becomes 2T + 1 = 7. The
target frame, the frame for which we want to predict the gaze is the 4th frame. Firstly, one can
notice that change in eye movement is quite significant across frames. Therefore, one would
ideally want eye level details to come majorly from the target frame. This is achieved by our
pre-processing technique. Note, how images are successively zoomed-in in first 4 images
and then zoomed out in last 4 images in this figure. This gives maximum zoom-in effect to
the 4th frame. Secondly, this specific zoom-in zoom-out ordering also implicitly encodes the
information about ordering of the frames in the input sequence— the most zoomed-in frame
is the target frame and the more zoomed-out an image seems with respect to the target frame,
the farther apart it is from it in time. Here, Frame 4 is most zoomed-in and with respect to it,
Frame 1 is more zoomed out than Frame 2 is which in turn is more zoomed out than Frame
3. This is important specifically because we want to predict gaze for the 4th frame but our
aggregation technique, the spatial max-pooling does not care about ordering of the sequence.
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Figure 2: An end-to-end schema for Sequential (Video) model. 2T + 1 frames are center-
cropped and rescaled to original size according to the scheme mentioned in the main text.
This scheme ensure greatest zoom-in affect for the middle frame. Since head pose changes
are relatively minor when compared to eye movements over these frames, one would want
eye orientation to get majorly captured from the middle frame, the frame for which we
want to predict the gaze. Middle frame getting greatest zoom-in ensures larger and detailed
availability of eye region thereby satisfying our objective.

1 Overview
Here, we briefly enumerate the content present in different sections. In Section 2, we give
experiment backed intuition on why we chose the specific pre-processing scheme for our
sequential (video) model MSA+Seq. In Section 3, we provide more details regarding the
discontinuity in Yaw angle for full 360◦ yaw prediction. We also present data showing the
limitation of θSC formulation due to which we came up with θWSC. In Section 4, we comment
on few limitations of our work. We give implementation details in Section 5. Next, we
present a couple of more experiments including ones on varying aggregation module and
using LSTM in Section 6. Finally, we provide the standard error for data presented in Table
1 in the main manuscript and values and standard errors for the plots in the main manuscript
in the later sections.

2 Pre-processing Scheme for Sequential Model
Our sequential (Video) model uses the MSA architecture with a specific pre-processing
scheme. Let us call the frame for which we want to predict the gaze as target frame. Let
us also call our proposed pre-processing scheme as ZoomIn. The scheme ensures that max-
imum zoom-in effect is applied on the target frame. It also ensures that the sequence or-
der information of the frames gets implicitly encoded— prediction is to be done for most
zoomed-in frame and the less zoomed-in a frame is, farther it is from the target frame in
terms of sequence order. One can see few examples pre-processed with ZoomIn scheme in
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Pre-processing Scheme Angular error
None 13.0
Random 12.6
ZoomIn 12.6
Reverse 12.6

Table 1: Performance of MSA+Seq model
with varying Pre-processing Scheme. First
row corresponds to SSA+wavg+Seq model.
We predict gaze for the middle frame of the
sequence

Pre-processing
Scheme

Angular
error

Random 16.0
Reverse 13.4
ZoomIn 13.2

Table 2: Performance of MSA+Seq
model with varying Pre-processing
Scheme. Here, we predict the gaze for
the last frame.

Figure 1.
The benefit of this scheme can be seen in a slightly different problem definition for

video gaze prediction. In this formulation, instead of the middle frame, last frame is cho-
sen as the target frame. In this case, according to our scheme, maximum zoom-in must
be applied to the last frame. Similar to the default configuration, we have same T (T = 3)
and CCropL. But now, given input image sequence I0, I1, I2, I3, I4, I5, I6, we center-crop the
images with sizes C0,C0,C1,C1,C2,C2,C3 respectively and rescale them back to original
size. Here, Ci is the (i+ 1)th element in CCropL. We compare this with two other zoom-in
schemes. Firstly, we use a ’Random’ zoom-in scheme. In this, we permute the centercrop
sizes [C0,C0,C1,C1,C2,C2,C3] randomly before applying them for every sequence, both in
training and in evaluation. This way, the MSA model has no way to get the frame-ordering
information. Secondly, we use a ’Reverse’ zoom-in scheme where the target frame gets
the least zoomed-in effect. In this case, given input image sequence I0, I1, I2, I3, I4, I5, I6, we
center-crop the images with sizes C3,C2,C2,C1,C1,C0,C0 respectively and rescale them back
to original size. As can be seen in Table 2, our configuration ZoomIn performs best. Signifi-
cantly better performance of our ZoomIn scheme and Reverse scheme over Random scheme
shows that implicitly present sequence information helps ZoomIn and Reverse schemes. Bet-
ter performance of ZoomIn over Reverse scheme shows the advantage of highest zoom-in
effect given to the target frame.

We also did the same experiment on our original problem definition where the target
frame is the middle frame. In this case, we find that our scheme, the reverse scheme and the
random scheme are all giving very similar performance as can be seen in Table 1. This has to
do with how Gaze360 dataset was created. It contains mostly monotonic movement of target
gaze across frames. People start from a gaze orientation and move their gaze consistently
in one direction. Due to this, the average gaze of the seven frames will naturally be very
close to the gaze of the middle frame, which is the target gaze. So, the network just needs to
obtain average gaze of all the frames and for this, the sequence information does not matter.
Relatively higher importance to the eye region of the target frame also does not matter when
one aims to take the average of all gazes.

3 Discontinuity In Yaw

We want to elaborate on two points on this subject. Firstly, as stated in the main manuscript,
backward gazes not only are harder to estimate owing to absence of face in the input image,
but also introduce discontinuity in the yaw angle. Specifically, for small ε , backward gazes
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(a) (b)
Figure 3: (a) Discontinuity in yaw space. Yaw angle defined with respect to negative z axis
(right figure). Discontinuity (left figure) is seen when the projection of the gaze vector on
the XZ plane is very close to the positive Z direction. From one side, the angle reaches π ,
and from the other, it reaches −π . (b) Distribution of actual and predicted yaw angle. Note
the dip around 0◦ in the distribution of the cosine-based estimate θC

of yaw angles π −ε and −π +ε are far apart in terms of the numerical value but are of close
physical proximity as can be seen in Figure 3 (a).

Secondly, in Figure 3 (b), we show the distribution of θC,θS and the ground truth θgt .
One can observe a significant dip at around 0◦ in θC. This indicates that θC has difficulty
in predicting around 0◦ and which arguably is the cause for inferior performance of θSC
on frontal ±20◦. The reason for this and the remedy of using θWSC is given in the main
manuscript.

4 Challenges and Limitations

We observe that the MSA model does not give benefit to backward gazes. This becomes
clear when one looks at the Back column of Table 1 of the main manuscript. We feel this
is intuitive. MSA aims to extract information from two magnification scales— eye region
and overall head region. For backward gazes, the face is not visible— eyes, nose and other
facial details are completely absent. So, one needs to estimate gaze from the overall head
orientation, i.e, the head pose. As the information is not contained in multiple magnification
levels, the MSA approach gives no benefit.

The other limitation of this approach is time complexity for single-image input model
type. Firstly, we note that for sequential models, MSA+Seq takes same amount of time
as SSA+avg+Seq and so there is no issue of time complexity here. For single-image input
models, the time complexity of MSA scales linearly with the number of elements in CCropL.
CCropL=[224,200,175,150] takes 4 times more time than Static model. As far as the GPU
RAM is concerned, MSA takes twice GPU RAM as Pinball Static [3]. For working within
twice GPU RAM, one would need to compute the 2D feature map one by one while simul-
taneously updating the max feature map stored in a buffer. CCropL=[224,150] takes two
times more time than Static model. However, unlike LSTM, MSA can be parallelized since
the 2D feature map computation for each magnification level is independent of each other
and so one could easily improve upon the time complexity issue.
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Centercrop size Val error Test error
224 13.72 13.83
210 13.68 13.78
200 13.73 13.76

Table 3: Angular error obtained on front
180◦ gazes in Test and Validation sets
using Static+avg model with MobileNet
backbone on Gaze360 dataset. At evalua-
tion time, center-crop followed by resize
operation is done.

Aggregation module Angular error
Spatial-Max 13.9

MAX 14.1
Spatial-Attention 14.0

LSTM 14.1
Table 4: Comparison of different aggre-
gation modules with MSA

5 Implementation Details

Similar to [3], we fixed the backbone’s output layer size to 256 for all our experiments. Our
network input is 224x224x3-sized images. For having a fair comparison with [3], we also
used T = 3 for sequence model. For all experiments on all three datasets and both model
types (video and single-image), unless specified otherwise, we used [224,200,175,150] for
CCropL, which we obtained empirically. When using the LSTM module as an aggregation
module, following [3], we used bidirectional LSTM with two layers and a hidden size of
256. We implemented the model using PyTorch. For all of the Gaze360 experiments, we
trained the network for 100 epochs with a batch size of 64, a learning rate of 0.0001, and the
Adam optimizer.

For the experiments on the RT-GENE dataset [2], following their GitHub code,1 we
used a learning rate of 0.000325 and the Adam optimizer with the same hyperparameters
(betas = (0.9,0.95)). Additionally, we use early stopping on validation loss with a patience
of 5.

6 Additional Experiments

6.1 Empirical Evidence on Significance of Scale in Gaze360 dataset

Here, we use Static+avg model with the MobileNet backbone. At evaluation time, we added
center-cropping with a fixed size and subsequent resizing to the original size in the data
preprocessing step for both the test and validation sets. Note that during model training,
no center-cropping was performed on the training and validation sets. One therefore ex-
pects performance to degrade upon the introduction of center-cropping at evaluation time.
However, we found a significant proportion of images having a better performance with the
cropping based preprocessing so much so that, we observe a minute performance improve-
ment on overall dataset as can be seen in Table 3. This implies that dataset contains images
of varying scales and the model does not extract features equally efficiently from all scales.
We observe similar findings on RT-GENE dataset as well whose data is presented in next
subsection.

1https://github.com/Tobias-Fischer/rt_gene/
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Center-crop size Val error (Hardnet68) Val error (Resnet18)
K-fold 0 K-fold 1 K-fold 2 K-fold 0 K-fold 1 K-fold 2

224 7.21 5.68 5.86 7.67 6.14 6.38
215 7.04 5.66 5.84 7.60 6.14 6.4
210 7.00 5.68 5.88 7.62 6.20 6.49

Table 5: Angular error on Validation set using static model with Resnet18 and Hardnet
backbones on RT-GENE

Centercrop size Angular error
224 14.5±0.16
200 14.31±0.06
175 14.3±0.13
150 14.4±0.19

Table 6: Finding the optimal crop-
size for Static+avg + Reg model with
Resnet18 backbone.

Method Backbone Angular
Error

MSA+raw + LSTM Resnet 7.1
MSA+raw + LSTM Hardnet 6.9

Table 7: Performance using LSTM as ag-
gregation module on RT-GENE dataset using
Raw-Original image type

6.2 Empirical Evidence on Significance of Scale in RT-GENE dataset
As shown in Table 5, similar to Gaze360, overall performance on the validation set improves
when we add center-crop preprocessing at evaluation time for RT-GENE dataset. Being more
prominent for K-fold=0, this holds true for all three folds with the Hardnet68 backbone. This
indicates that (1) images in the data have multiple scales and that (2) the Static model [3] does
not capture features from all scales equally well. It is worth noting that this is an ’indicator’
experiment. For us to take cue from it, it is not necessary for this effect to manifest with all
backbones to the extent that the average performance improves.

6.3 Benefit of Using Multiple-Scales Over Single Optimal Scale
Given the evidence in Subsection 6.1 showing that Gaze360 dataset has decent variations
in scale, it is reasonable to assume the existence of a single centercrop size which would
give better performance. We therefore also wanted to check whether our MSA+avg model
performs better than Static+avg model with that optimal center crop size. To be specific,
all input images will be center cropped to that crop size and they will then be subsequently
rescaled to original size of 224. Rescaled images are then fed to Static+avg model. We did
the experiment with Resnet18 backbone. Results present in Table 6 show that 175 as center-
crop size is the optimal configuration. As can be seen from Table 1 of the main manuscript,
our MSA+avg model outperforms it. Note that the comparison done this way is not fair for
our MSA+avg model as one cannot know optimal centercrop size for test dataset a priori.
Inspite of this, this outperformance shows that using multiple cropsizes is better over the use
of one crop size.

6.4 Effect of Different Aggregation Modules
Here, we varied the aggregation modules: we used Spatial-Max (used in our proposed
model), LSTM, MAX and Spatial-Attention as aggregation techniques. For Spatial-Attention,
2D feature maps were aggregated using an attention module instead of max-pool. For LSTM
and MAX, one-dimensional features coming out of the backbone network’s last dense layer
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Name Backbone All 360 Front 180 Front 40 Back
Spatial Weights CNN [4] - 0.28 0.27 0.33 0.34
Spatial Weights CNN [4] Resnet 0.18 0.13 0.21 0.56

CA-Net [1] - 0.54 0.49 0.34 1.77
CA-Net [1] Resnet 0.18 0.20 0.19 0.10
Static+avg Resnet 0.06 0.04 0.18 0.12

Static+wavg Resnet 0.06 0.05 0.12 0.13
MSA+raw Resnet 0.10 0.13 0.38 0.48
MSA+avg Resnet 0.18 0.27 0.58 0.16

MSA Resnet 0.17 0.25 0.50 0.12
MSA Hardnet 0.08 0.13 0.31 0.089

Table 8: Standard Error of models presented in Table 1 (Left) of main manuscript

Name Backbone All 360 Front 180 Front 40 Back
SSA+avg Resnet 0.05 0.04 0.06 0.36

SSA+wavg+Seq Resnet 0.02 0.04 0.06 0.24
MSA+avg+Seq + Reg + LSTM Resnet 0.06 0.08 0.22 0.31

MSA+Seq + Reg + LSTM Resnet 0.05 0.07 0.17 0.29
MSA+avg+Seq Resnet 0.06 0.05 0.12 0.19

MSA+Seq Resnet 0.08 0.06 0.13 0.24
MSA+Seq Hardnet 0.05 0.08 0.17 0.06

Table 9: Standard Error of models presented in Table 1 (Right) of main manuscript

Figure 4: A variant of our Seq[W]SCMulticrop model which has LSTM as aggregation
module
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Aggregation Module Standard
Error

SPATIAL-MAX 0.18
MAX 0.10

SPATIAL-ATTENTION 0.08
LSTM 0.11

Table 10: Standard Error of models pre-
sented in Table 4

were aggregated. For LSTM, the input sequence ordering followed CCropL. For MAX,
maximum was taken along the scale dimension. We used Resnet18 as the backbone for this
study. As seen in Table 4, performance is not significantly dependant on the choice of the
aggregation technique.

6.5 LSTM as an Aggregation Module
We did extensive experiments with LSTM as an aggregation module. As briefly described
in the main document, the output of the backbone network is passed into the LSTM. This is
different from the aggregation module for our main model MSA, since in that case, output
of the CNN portion of the backbone network is aggregated. For more clarity, please refer
to Figure 4. We did the experiments on both Sequence and Static model. For the Static
model, output of LSTM module corresponding to last element of input sequence is taken and
passed through dense layers to yield the target variables. For the Sequence model, output of
the LSTM module corresponding to the middle element of the input sequence is taken and
passed through the dense layers to yield the target. It is done this way for the sequence model
since we want to predict the gaze for the middle frame in the input sequence.

Regularized Pinball Loss: As stated in the manuscript, following Gaze360 paper [3], we
keep our loss as Pinball Loss. We explored another way here to fix model’s bad performance
near θ = 0◦. We added a constraint penalizing deviation of predicted sin(θ), cos(θ) from
sin2(θ)+ cos2(θ) = 1. It is implemented as addition of a weighted MSE loss component.
Our final loss is

w∗LP +(1−w)∗LMSE

, where LP is the pinball loss, LMSE =MSE(1,sin2(θ)+cos2(θ)) and w set to 0.9. We denote
the presence of this regularization by “Reg” token in model name in the tables. We found
this to slightly outperform with a couple of backbones (majorly with Squeezenet). One can
verify the same by looking at performance data for this configuration in Tables 19, 20, 17
and 18. However, one can see that even with the regularization, the weighted sine-cosine
transformation θWSC still gives better performance over naive sine-cosine transformation
θSC . We, therefore did not include it in our final model configuration. Nonetheless, one
can observe the benefit of using our Static[W]SCMultiCrop model over Static[W]SC model
from above tables.

Performance on Static and Sequence model types are shown in Table 11 and Table 12
respectively for Gaze360 dataset. Results on RT-GENE dataset are shown in Table 7.
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Model All 360 Front 180 Front Fac-
ing

Back

MSA+avg + LSTM + Reg 14.1±0.10 12.3±0.10 12.4±0.20 20.6±0.38
MSA + LSTM + Reg 14.1±0.11 12.3±0.10 12.3±0.20 20.6±0.37

Table 11: Performance comparison for Static models with LSTM as aggregation module
and with Resnet backbone on Gaze360 dataset [3]

Model All 360 Front 180 Front Fac-
ing

Back

SSA+avg+Seq + LSTM +
Reg

13.18±0.03 11.45 ±
0.06

11.2±0.11 19.4±0.34

SSA+wavg+Seq + LSTM +
Reg

13.12±0.05 11.39 ±
0.05

10.9±0.19 19.3±0.35

MSA+avg+Seq + LSTM +
Reg

12.74±0.06 10.94 ±
0.08

10.7±0.22 19.2±0.32

MSA+Seq + LSTM + Reg 12.71±0.05 10.91 ±
0.07

10.6±0.17 19.2±0.30

Table 12: Performance comparison for Sequential models with LSTM as aggregation mod-
ule and with Resnet backbone on Gaze360 dataset [3]

7 Standard Error Data on Model Performances
In Table 8, 9 and 10 , we present the data containing standard error of models present in
Table 1 (Left) and Table 1 (Right) of of the main manuscript and Table 4 respectively. We
train the models 3 times and compute the standard deviation of mean angular error.

8 Performance Data on Different Backbones
In Tables 13,14, 15 and 16 we present the average angular error along with standard error
of our different static models over multiple backbones. Note that for generating this data,
each model configuration was trained three times independently and mean and the standard
deviation of the three average angular error numbers are reported.

Backbone Static Static+avg Static+wavg MSA+avg MSA
Squeezenet 20.9±0.89 17.8±0.10 17.49±0.03 20.2±0.18 19.62±0.37
Shufflenet 17.96±0.06 17.25±0.04 17.12±0.07 16.1±0.11 15.9±0.12
Mobilenet 16.3±0.19 15.8±0.47 15.7±0.41 14.6±0.13 14.5±0.10
Resnet18 15.78±0.07 14.44±0.06 14.35±0.06 14.0±0.18 13.9±0.17
Hardnet68 14.7±0.18 13.91±0.05 13.85±0.06 13.8±0.10 13.72±0.08

Table 13: Model Performances (with standard error) on all 360◦ gazes
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Backbone Static Static+avg Static+wavg MSA+avg MSA
Squeezenet 15.2±0.46 15.4±0.17 15.12±0.08 17.8±0.28 17.3±0.30
Shufflenet 15.2±0.10 15.55±0.04 15.42±0.07 14.13±0.06 14.02±0.07
Mobilenet 13.8±0.19 14.1±0.53 14.0±0.49 12.9±0.10 12.8±0.12
Resnet18 13.0±0.13 12.77±0.04 12.69±0.05 12.3±0.27 12.20±0.25
Hardnet68 12.4±0.10 12.3±0.10 12.2±0.11 12.10±0.14 12.03±0.13

Table 14: Model Performances (with standard error) on Front 180◦ gazes

Backbone Static Static+avg Static+wavg MSA+avg MSA
Squeezenet 13.3±0.56 16.5±0.96 13.6±0.1 20.6±0.62 13.5±0.25
Shufflenet 15.1±0.1 16.45±0.09 15.63±0.06 14.2±0.18 13.2±0.16
Mobilenet 13.79±0.05 14.48±0.44 13.68±0.12 12.9±0.22 12.27±0.19
Resnet18 13.1±0.25 13.1±0.18 12.8±0.12 12.6±0.58 12.1±0.50
Hardnet68 12.3±0.37 12.4±0.11 12.08±0.11 12.1±0.40 11.67±0.30

Table 15: Model Performances (with standard error) on front facing (40◦) gazes

Backbone Static Static+avg Static+wavg MSA+avg MSA
Squeezenet 41±2.7 26.3±0.24 26.0±0.34 28.9±0.61 28.2±0.54
Shufflenet 28.0±0.43 23.1±0.5 23.2±0.13 23.0±0.50 22.9±0.58
Mobilenet 25.5±0.35 22.0±0.76 21.7±0.7 20.9±0.29 20.6±0.25
Resnet18 25.6±0.21 20.4±0.12 20.4±0.13 19.9±0.16 19.9±0.12
Hardnet68 22.9±0.50 19.7±0.21 19.6±0.17 19.98±0.04 19.81±0.09

Table 16: Model Performances (with standard error) on back gazes

Model All 360 Front 180 Front Facing Back
Squeezenet 15.94 13.05 12.85 26.32
Shufflenet 16.11 14.31 14.94 22.61
Mobilenet 14.71 12.86 12.87 21.34
Resnet18 14.07 12.19 12.14 20.86
Hardnet68 13.65 11.98 11.93 19.69

Table 17: Angular error with LSTM as aggregation module for MSA+avg+LSTM+REG
model

Model All 360 Front 180 Front Facing Back
Squeezenet 15.91 13.03 12.64 26.27
Shufflenet 16.07 14.26 14.67 22.58
Mobilenet 14.66 12.83 12.71 21.24
Resnet18 14.05 12.16 12.04 20.84
Hardnet68 13.63 11.95 11.85 19.66

Table 18: Angular error with LSTM as aggregation module for MSA+LSTM+REG model

Model All 360 Front 180 Front Facing Back
Squeezenet 16.72 14.26 14.74 25.57
Shufflenet 17.52 15.91 16.49 23.3
Mobilenet 15.48 13.74 13.14 21.76
Resnet18 14.41 12.66 12.81 20.72
Hardnet68 13.81 12.19 12.29 19.64

Table 19: Angular error with LSTM as aggregation module for Static+avg+REG model
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Model All 360 Front 180 Front Facing Back
Squeezenet 16.68 14.26 12.58 25.37
Shufflenet 17.43 15.83 15.81 23.19
Mobilenet 15.43 13.7 12.95 21.62
Resnet18 14.35 12.6 12.5 20.65
Hardnet68 13.75 12.14 12.07 19.54

Table 20: Angular error with LSTM as aggregation module for Static+wavg+REG model
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