MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 1

Supplemental Material for
GaussiGAN: Controllable Image Synthesis
with 3D Gaussians from Unposed Silhouettes

Youssef A. Mejjati’ ! University of Bath
Isa Milefchik? 2 Brown University
Aaron Gokaslan® 3 Cornell University
Oliver Wang* 4 Adobe
Kwang In Kim® 5UNIST

James Tompkin?

This supplemental document contains additional experiments on varying K and the dataset size,
comparisons against a geometry proxy-based method for scene generation [5], and comparisons to
an unsupervised 2D parts-based inference method [6] that could not fit into the main paper (Sec. A).
We also provide additional and fuller results reporting (Sec. B), more detailed discussion of how
to estimate Gaussian covariance matrices (Sec. C), additional details on mask texturing (Sec. D),
network architecture details (Sec. E), and finally a derivation of the analytic Gaussian projection
derivative (Sec. F).

Please also see our supplemental video, which includes examples of interactive editing and
results showing rotations of the recovered 3D Gaussians and their use in generating masks and
textures, in comparison to HoloGAN, PlatonicGAN, and Liao et al.

A Additional comparisons

A.1 Varying K and dataset size.

We provide K at training time, which is simple to estimate by hand for many objects, e.g., one each for
the body and head, one for each limb. As K varies, our density losses over random rotations encourage
detail where it is required (Fig. 1, left). Too few K diminish pose or shape; too many K leads to
redundant Gaussians. As we set a minimum size, these appear as ‘little dots’ (Fig. 1, right) and can be
ignored without affecting downstream tasks. For more control, a user could pre-define the canonical
G¢ from which a set of per-image deformations is learned. We also shows how the Gaussians are still
usefully recovered as input data decreases 64x in number (Fig. 1, right), though with less mask detail.

A.2 Liao et al.’s [5] method on our data

Liao et al. [5]’s method uses cube and sphere mesh proxies to represent multiple simple scene
objects, and this allows control in image generation over camera rotation and object rotation. Our
data has one complex object with deforming parts. Figure 3 shows that these proxies are promising
but still unfortunately too simple for our data. Even though their generated images are of reasonable
quality (though low in resolution and with minor artifacts), the pose of the object changes when

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

Citation
Citation
{Lorenz, Bereska, Milbich, and Ommer} 2019

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

2 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

(ot 444

t'ﬂ\‘ﬂ\rﬁy;

Dataset Mask K=1 K=3 K=6 K=12

Figure 1: Left: Varying K produces levels of abstraction over the object’s shape and pose and so
over generation control. At low K, only the major features are represented such as legs and neck.
At higher K, details like individual legs (K =12, top) and leg parts (calf, thigh) appear with the
detail required to model the pose variation, e.g., in Manuel (bottom), the right leg moves more in

the animation and gains a knee at K=12.
% \ h \
N N

m{{'/d,' i I

i ';'
| ' \
f %\\\}"‘

n{‘,"'n{“’d,"'n “}o‘h

0=0° 0=40° 0=80° 0=120° 0=160°
Figure 2: Randomly sampling sparser datasets still recovers the coarse 3D structure of the input
object. Rows 0, 1,2, 3 use %, %, %, é of images in the training set; approximately 280, 140, 70,

35 images respectively. Colorings are different across rows.

R —

_—

rotating, e.g. the Giraffe neck bends while rotating. One dataset fails to rotate at all—Pegasus.
Further, while their RGB appearance is often as vivid as the input, the texture is not consistent when
rotating the camera, e.g., lighting variation, as the proxy geometry is not sufficiently descriptive
to allow separation of shape and texture variation. Liao et al. is designed primarily for multiple
objects; future work could build upon both methods to handle multiple complex objects.

A.3 Lorenz et al. [6] 2D part discovery on our data

For parts-based discovery, we compare our 3D parts to the 2D part maps from Lorenz et al. [6].
For fair comparison, we train the method only on mask images. The discovered parts are relevant,
though some areas miss representation (Fig. A.3, Maple), and with less conformance to the
underlying 3D space (e.g., failing to rotate correctly with the object, Carla).

Citation
Citation
{Lorenz, Bereska, Milbich, and Ommer} 2019

Citation
Citation
{Lorenz, Bereska, Milbich, and Ommer} 2019

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 3

0=0° 0=80° 0=160° 0=0° @=80° 0=160° 6=0° 6=80° 0=160° 6=0° 6=80° 6=160°

’ /N i,

£ { ‘t E — | W 1 ‘. s‘ '}3 ‘{
L |

ihdhdidbdinmnea i INNI AR SRR S

o Bon, y)
N - ={ [)-— \ (Y 4
- | | z |
1 | 1 |
|

0=0° 6=80° 6=160° 0=0° 6=80° 6=160° 6=0° O0=80° 6=160° 6=0° 6=80° 0=160°

\ \ / ‘ 1 | | |

R N N P) ¢ R . -'

S) Cl - N & ! IH b ! '..‘ ? ‘.';

i

Liao

Liao

S \) /'

.... |
A
r

Figure 3: Please zoom in to see detail. Rows in each block: Reconstructed Gaussians, masks, and
RGB images, across three output angles and with any texture-specific latent variables fixed, with
comparisons to Liao et al. [5] and on just masks and just RGB foregrounds. Top block of five
rows: Datasets of objects of fixed pose showing increasing shape complexity: Maple, Airplane,
Carla, Pegasus. Bottom block of five rows: Datasets of animated objects with varying pose showing
increasing shape complexity: Bee, Giraffe, Manuel, Old Robot.

Liao

Liao

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

4 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

Airplane Old Robot

Bee Hover Maple

DUl §

T
£¥1¥ "W,

Pegasus

Figure 4: Results for Lorenz et al. [6] trained on masks only from our various datasets. Each has
been trained for 50,000 iterations. The top row in each subfigure is the input into the network and
the bottom row is the learned 2D part map. The part maps generally correspond to different areas
of the object, but can struggle to represent object rotation (e.g., legs do not rotate in Manuel). For
the ‘dense’ class of Maple, only the the relatively static trunk is consistently labeled.

Citation
Citation
{Lorenz, Bereska, Milbich, and Ommer} 2019

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 5
B Additional results

We show additional qualitative results across all datasets in Figures 7—14.

Interactive editing. In our supplemental video, we show an application of user control over the
recovered Gaussian proxies. We built a demo that exploits our Gaussian proxy’s form to allow
simple drag-and-drop object part translation, anisotropic scale, and rotation, plus camera control
and lighting variation via z;. This allows in-distribution editing of the poses, e.g., Giraffe neck
bending and leg adjustments. It also allows some out-of-distribution adjustments, such as placing
the giraffe in a combination of poses that were not in any one input example, or more ‘creative’
edits such as enlarging or elongating certain Gaussians.

For our interactive editing scenario, which is 2D, each individual generated 2D image is coherent.
However, while our approach recovers a coarse 3D ‘rig’ or ‘artist’s mannequin’ for an object, some
texturing can be inconsistent in 3D (such as in rotation animations) as we only affect a 2D generator.
While this gives high resolution, some fine detail can appear to shimmer as the camera rotates (e.g.,
on the Maple scene). This is because the chosen K coarse Gaussians do not provide sufficiently
localized conditioning for the small leaf features as the camera varies by small angles.
Adaptation to background changes. Figure 5 shows that when the background becomes darker,
the generated foreground also becomes darker, and vice versa. In addition, we show in Figure 6 that
our generated texture is still reasonable when given backgrounds that are out of distribution. This
effect happens automatically through conditioning foreground generation on the background image.
Quantitative evaluations. In Tables 1 and 2, we report quantitative metrics for each dataset
independently; these were averaged in the main paper due to space limitations.

Table 1: Top: KID x 100 + STD x 100 and FID values (lower is better). Bottom: Mean IoU x 100
(higher is better) and DSSIM X 100 (lower is better) for reconstructed masks over the test set.

Giraffe Manuel Maple Carla
OnRGB KID v FIDv | KID v FIDv | KID v FIDv | KID v FID v
Ours 2724041 5396 | 4.24+035 6236 | 1139+08 10807 | 3.64+029 62.73
PlatonicGAN [2] | 42.98 + 0.68 32799 | 63.49+077 43538 | 5395+129 36483 | 4348064 33858
HoloGAN [7] 3928+072 32065 | 31.21 081 29244 | 4649+ 1.14 32437 | 2505+ 0.68 24078
Liao et al. [5] 3343+0.77 281.26 | 4261 086 317.13 | 3656 +1.08 24864 | 39.13+0.81 310.21
On masks | loUa DSSIMvY loUa DSSIMY loUa DSSIMY IoUa DSSIM v
Ours 83.96 622 81.46 5.66 86.51 21.87 89.39 6.22
PlatonicGAN [2] 67.70 23.85 67.54 1657 92.77 33.09 83.66 1320
HoloGAN [7] 30.68 39.38 42.62 18.40 62.74 64.24 38.60 38.83
Liao et al. [5] 31.27 60.82 41.13 31.14 68.94 88.61 36.50 5893

Table 2: Top: KID x 100 + STD x 100 and FID values (lower is better). Bottom: Mean IoU x 100
(higher is better) and DSSIM x 100 (lower is better) for reconstructed masks over the test set.

Bee Pegasus Old Robot Airplane
On RGB KID v FDv | KID v FDv | KID v FDv | KID v FID v
Ours 7.62 + 0.44 124.18 | 11.03 +0.61 156.33 | 15.93 +0.76 186.81 | 1671 +1.17 188.07
PlatonicGAN [2] | 38.06 +0.73 324.56 | 59.86 + 1.29 456.46 | 56.49 +0.94 439.7 | 39.31 +0.79 314.61
HoloGAN [7] 1832 + 0.44 25295 | 27.94 +0.94 291.92 | 41.29 + 1.34 37252 | 32.18 091 291.29
Liao et al. [5] 2477 +0.59 265.52 | 32.61 £0.76 32535 | 37.83 +1.04 333.02 | 26.64 +0.82 261.98
On masks ‘ IoUa DSSIM v IoUa DSSIM v IoUa DSSIM v IoUa DSSIM v
Ours 76.11 9.22 85.17 6.01 87.58 9.86 65.57 9.72
PlatonicGAN [2] 65.82 2376 82.35 17.04 81.88 25.52 76.64 17.58
HoloGAN [7] 34.58 29.81 4483 31.25 52.65 40.70 48.11 24.17

Liao et al. [5] 17.98 4429 39.74 45.70 33.81 76.42 3142 39.09

Citation
Citation
{Henzler, Mitra, and Ritschel} 2019

Citation
Citation
{Nguyen-Phuoc, Li, Theis, Richardt, and Yang} 2019

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

Citation
Citation
{Henzler, Mitra, and Ritschel} 2019

Citation
Citation
{Nguyen-Phuoc, Li, Theis, Richardt, and Yang} 2019

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

Citation
Citation
{Henzler, Mitra, and Ritschel} 2019

Citation
Citation
{Nguyen-Phuoc, Li, Theis, Richardt, and Yang} 2019

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

Citation
Citation
{Henzler, Mitra, and Ritschel} 2019

Citation
Citation
{Nguyen-Phuoc, Li, Theis, Richardt, and Yang} 2019

Citation
Citation
{Liao, Schwarz, Mescheder, and Geiger} 2020

6 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

Figure 5: Lighting variation in the foreground as the background varies in intensity.

0° 6=40° 6=80° 0=120° 0=160° =200° =240° =260°

Figure 6: At test time, when giving significantly out of distribution backgrounds (e.g., fields of pink
flowers under sunset, snowy landscape), our generator still produces reasonable results that match
the lighting. Each row contains an example rotated from a different input instance at a different
initial orientation.

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

Input 6=0° 0=40° 0=80° 6=120° 0=160° 6=200° 0=240°

Db]

SSEEEE N bl T = RS

Figure 7: Additibnal results for Giraffe, with two randomly sampled latent vectors for texture.

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

KA AR R
A BRAESENN

N

INNNDNRE
IONNDNE
e S
e

Figure 8: Additional results for Manuel, with two randomly sampled latent vectors for texture.

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 9

Input 6=0° 0=40° 0=80° 6=120° 0=160° 6=200° 0=240°

~So | || || e | e | = || W || &
||| W || <

M A = W F| e || =

M ™ N |

Figure 9: Additional results for beehover, with two randomly sampled latent vectors for texture.

10 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

6=80° 0=120° 0=160° 6=200° 6=240°
[/

‘- - ?
) " P

Figure 10: Additional results for OldRobot, with two randomly sampled latent vectors for texture.

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 11

Input 0=0° 0=40° 0=80° 0=120° 0=160° 0=200° 0=240°

P
v
L1

Ll

vew
it ot 2
A AL

Figure 11: Additional results for Maple, with two randomly sampled latent vectors for texture.

»
..
-
»
ai
b

| KN T S

12 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

Input 0=0° 0=40° 0=80° 0=120° 0=160° 6=200° 0=240°

Pl v s

11 AR
g S A R
M i i i L i
A i i i i i i

Figure 12: Additional results for Carla, with two randomly sampled latent vectors for texture.

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 13

Input 6=0° 0=40° 0=80° 6=120° 0=160° 6=200° 0=240°

g || || ol || S | [|| sl || || g

vl || N | D | ale | | Jneyer

b, 3 . MR ,‘\.’"1 N * W . S 3

~-

Figure 13: Additional results for Airplane, with two randomly sampled latent vectors for texture.

14 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

Input 0=0° 0=40° 6=80° 0=120° 6=160° 6=200° 0=240°

Figure 14: Additional results for Pegasus, with two randomly sampled latent vectors for texture.

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 15

C Methods to estimate Gaussian covariance X

When estimating the covariance matrices X of our Gaussian proxies, we consider three
approaches: the eigendecomposition approach, the Cholesky decomposition approach, and the
conditional covariance method [1].

Eigendecomposition approach. Naively predicting the values in the Gaussian covariance
matrices X as free parameters does not satisfy the positive definiteness requirements for a covariance
matrix. Instead, we leverage the eigendecomposition of £=VUVT, where U is the diagonal matrix
of eigenvalues with strictly positive values on the diagonal, and V is an orthogonal matrix formed by
the eigenvectors of X.. We use a fully connected network to predict the diagonal values in U. To ensure
that they are positive, we use a sigmoid activation at the final layer, and also add a small e=0.01 for
strict positiveness. Similarly, we predict the columns of V using a fully connected network. In this
case, we want V to be orthonormal. As such, we adopt the following process: First, we predict two
vectors v; and Vé and obtain v; as the cross product of v; and vé. Then, the third vector v; is obtained
as the cross product of v; and v,. Finally, the i-th column of V is obtained by normalizing v;.

In addition, learning covariances with 32-bit float types caused issues; 64-bit double produced
more stable training.

Cholesky decomposition approach. The Cholesky decomposition approach enforces positive
semi-definiteness via predicting Y2 such that £= (E%)TE%. However, in our Gaussian proxies,

o . . . 1
the individual elements o~ of 2 have intended meaning as the 3D scale of object parts, but X2 does
not provide an intuitive control over those o= values.

Conditional covariance approach. In this approach [1], we describe the covariance matrix as:

2
O’1 C120102 C130103
2
Xi=|cppoion o 2302073 |, (€))]
2
C130103 (€2302073 0'3

where o; are the individual standard deviations and c;; are the correlations between variables
indexed by i and j. Given these correlations,our network only needs to predict six variables:
01,02,03,C12,C13,¢23. We predict all variables directly, apart from c;3, which is predicted as a
combination of ¢12,¢13:

e =cpei+ennV(l—cp)?(1-c13)?, 2

where ¢y3)1 is the partial correlation [1]. Our network predicts c¢,3); instead of ¢23 and uses it to
compute c¢p3. This approach ensures that the resulting covariance matrix is positive definite, and
similarly to the eigenvalue decomposition, results on a stable training while allowing us to directly
impose bounds on individual o;.

To evaluate these three methods, we form a test scenario where we try to optimize the Gaussian
parameters for each method with the goal to fit 10 randomly selected Giraffe silhouettes; that is,
we minimize the density loss L.

Figure C shows the averaged loss values for the three methods. We see that the conditional
correlation based method is the fastest to converge, followed by our eigenvalue decomposition
method. Although after few iterations there is no difference between both methods. We see that
the Cholesky based method fails to minimize the reconstruction objective in the same way as other
methods. As such, we chose the eigenvalue based method due to its better objective minimum and
its intuitive interpretation: eigenvectors represent the direction of the Gaussians while eigenvalues
represent the amplitude along each direction, and this maps well to the scale and rotation of each
‘part’ in the reconstruction.

Citation
Citation
{Baba, Shibata, and Sibuya} 2004

Citation
Citation
{Baba, Shibata, and Sibuya} 2004

Citation
Citation
{Baba, Shibata, and Sibuya} 2004

16 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

oe . Coucor Figure 15: Average L, function of iterations
— wo. | computed for three covariance estimation meth-
05 ods. While Cndcorr: conditonal correlation, and
EIG: eigenvalue decomposition methods reach the
same minima, CHOL: Cholesky based methods
031 struggle due to the lack of precision propagated in
the 2D projection phase. Our eigenvalue decom-
position method is only slightly slower than the
conditional covariance method, but it reaches the
same minima and offers more intuitive control of
0 100 200 300 40 %0 the resulting Gaussians.

Iterations

0.4 4

Loss

0.2 4

0.1+

D Details of mask texturing

This section is significantly extended from the main paper, explaining the losses for mask
texturing and providing details on the rationale for these losses.

Given a database of RGB images i € Z and corresponding binary masks m € M, we wish
to learn a generative model of texture inside the mask area conditioned on the background. For
this, we compute the masked image i, =i® (1—m) containing only background pixels, and the
foreground image iy =i©m, where O is the element-wise product. We use an appearance encoder
E; to extract a latent representation z; € R? for the foreground texture: z;=FE;(i). The goal of z;
is to supervise the texture synthesis via a separate ‘latent reconstruction’ loss (that we will introduce
later), and to let us sample z; at test time to provide control over foreground generation.

Next, we feed the background image i;, through a U-Net like architecture with residual blocks
separating the encoding and decoding part. We name this network G;. Through tiling, we
concatenate z; layer-wise in the encoding phase of the U-Net. This helps to ensure a strong
conditioning on the appearance. As an additional textural hint, we concatenate the Gaussian maps
g obtained from m in the decoding stage of the U-net. This conditioning is also applied layer-wise
in the same way Gy, is conditioned.

The final composited image i’ is thus obtained by compositing the output of G; with the
original background: i’ =G; (ip,z;,8) Om+iyp.

D.1 Losses

We encourage our network to learn texture using multiple losses, with overall energy to minimize
given by:

L'(Gi.E;.Di.m) =P1 Ligee +B2 L+ B3 Lyt +BaLlg,
+B5 Lo +B6 L Rec- 3)
For hyper-parameters, we fix 81 =100 8,=0.5 83=0.01 B4=1 55=10 B=0.1.

Reconstruction loss. 'We encourage the synthesized image i’ to be an identity of the input image
i. We use the Ly loss: L, (i,i")=|li-i"|y".

Perceptual loss. We encourage the final image to have fine-grained details by using a perceptual
loss. Following Johnson et al. [3] we use a VGG16 network, and extract features from its second
convolutional block ("conv2;’), and encourage the real and generated features from i and i’ to be

similar; that is Efp (1,0")=||p2(i)— 2 (i")||1, where ¢, correspond to the conv2; feature activations.

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 17

KL loss. To allow texture sampling of the foreground at test time, we need z; to have a constrained
and known structure. Inspired from VAESs, we hence obtain z; by predicting its mean and variance
vectors, then we sample it using the re-parametrization trick [4]. Using the aforementioned statistics,
we enforce the latent vector to be sampled from a standard normal distribution, using the KL
divergence loss.

Latent reconstruction loss. Even though the KL loss insures a constrained latent representation,
which allows sampling from the same space encoded by E;. It does not insure that the generator G;
decodes different z; into diverse images. For example, G, can output the same image independently
of z;, and in that scenario all the losses would still be minimized. To avoid such a scenario, we add a
novel encoder E l’ , that reconstructs the latent z; from i’, and enforce a reconstruction loss via: Eiz Rec=
llzi —z;||1. Note that when back-propagating gradients through that loss, we update all the parameters
involved in the generation process, apart from the parameters of E;. Doing so avoids the scenario
where E; and G; hide the information of the latent code without producing diverse images [9].
Adpversarial loss. 'We follow the same GAN loss as for the mask generation part, but the input
to the new discriminator D; ,, is now the tuple (i,m), fed through concatenation. Using the tuple
ensures that the generated texture is sampled from the distribution of real textures, and also that it is
correlated in the same way to the mask as the real texture is. As such the adversarial loss is given by:

Ladv(Gi,Di) =E s m) [min(0,—D; (i’,m)—1)]
+E) [min(0,D; (i,m)—1)]. 4

Feature match loss. Separate from a perceptual loss, we also add a deep feature matching loss
in a similar manner to the mask generation part. This helps improve sharpness by enforcing that
real and generated images elicit similar deep feature responses:

Li(Di)=Eiirm

L _ 2
ZHDE’)(i’,m)—DE”(i,m)Hzl, 5)
I=1
where L is the number of feature layers within the network.

E Architecture details

Our network has multiple neural network based components. All the discriminators are
multiscale with a depth of 3 and share the same architecture. The only variable that can change
is the number of channels in the input/output layers. Please see Appendices E to E for details on
the architectures of our individual components.

Mask generation. Appendices E to E show the architecture of the different components for the
mask generation part.

Texture generation. For texture we use the same discriminator architectures used for the mask.
The foreground encoder E; shares the same architecture as Table E, but predicts mean and
log-covariances that are used for sampling the texture latent using the (re)-parametrization trick,
and that are also used for the KL divergence loss. Similarly, the encoder E; that reconstructs z;
from i’ also shares the same architecture as described in Table E. The texture generation network
is based on a U-Net like architecture described in Table E.

Citation
Citation
{Kingma and Welling} 2014

Citation
Citation
{Zhu, Zhang, Pathak, Darrell, Efros, Wang, and Shechtman} 2017

18 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

Layer #neurons Act.

Table 3: Architecture for the canonical prediction

network G. FC refers to a fully connected layer. CONST. 256 -
CONST refers to the input learnable constant. K FC. 256 LReLU
is the number of Gaussians. Blue rows correspond FC. 256 LReLU
to the prediction of the mean vector, orange rows FC. 256 LReLU
correspond to the prediction of the covariance FC. 256 LReLU
matrix, and non-colored rows are shared between FC (pp)- K*3 Tanh
both. Final feature activations are re-scaled into FC (vp). K*3 Sigmoid
the intervals stated in Section 3 of the main paper. FC (v)). K*3 Sigmoid

FC (U). K*3 Sigmoid

Layer #Filters Size Stride InstNorm Act.
Table 4: Architecture for the Cony. 64 Tx7 1 v LRelL.U
encoder E,,. ‘Conv.” iscon- Conv. 64 3x3) v LRelL.U
volutional layer; ‘Res.” is Conv. 128 3x3 1 V4 LRel.U
residual block; ‘InstNorm’ (Cony. 128 3x3 2 V4 LReLU
is instance normalization; (Copv. 128 3x3 1 V4 LReLU
‘Act” is activation func- (Copv. 128 3x3 2 v LReLLU
tion. ‘LReLU’ denotes Leaky Conv. 512 3x3 2 v LRelL.U
ReLU with a factor of 0.2. MaxPool. - - - - -
FC. 8 - - - NA

Layer #neurons Act.

FC. 256 LReLU

FC. 256 LReLU

FC. 256 LReLU
Table 5: Architecture for per-instance transforms FC. 256 LRelLU
prediction. FC refers to a fully connected layer. FC. 256 LReLU
K is the number of Gaussians. Colored rows FC. 256 LReLU
correspond to heads for specific transforms, while FC.(®) K*3 Tanh
uncolored rows represent the shared part of the FC. 256 LReLU
network. Final feature activations are re-scaled to FC. 256 LReLU
be in the intervals discussed in Section 3.2 of the FC. (s) K*3 Sigmoid
main paper. FC. 256 LReLU

FC. 256 LReLU

FC. (0) K*3 Tanh

FC. 256 LReLU

FC. 256 LReLU

FC. (Tp) 1 Tanh

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

19

Table 6: Architecture for
the generator G,,. ‘T-conv.’
is a transposed convolutional
layer; ‘InstNorm’ is instance
normalization; ‘Act.” is ac-
tivation function. ‘LReLU’
denotes Leaky ReLLU with a
factor of 0.2.

Table 7: Architecture of
the discriminators D,, and
D;. ‘LReLLU’ denotes Leaky
RelLU with a factor of 0.2.

Table 8: Architecture for
the texture generator G;j.
‘Conv.’ is convolutional layer;
‘Res.’ is residual block; ‘In-
stNorm’ is instance normal-
ization; ‘Act.” 1is activation
function. ‘LReLU’ denotes
Leaky ReL.U with a factor of
0.2.

Layer #Filters Size Stride InstNorm Act.
T-conv. 256 3x3 1 v LRelLU
T-conv. 256 3x3 2 v LRelLU
T-conv. 128 3x3 1 v LReLLU
T-conv. 128 3x3 2 v LReLLU
T-conv. 64 3x3 1 v LReLLU
T-conv. 64 3x3 2 v LRelLU
Conv. 1 3x3 1 v Tanh
Layer #Filters Size Stride InstNorm Act.
Conv. 64 4x4 2 - LRelLU
Conv. 128 4x4 2 v LRelLU
Conv. 256 4x4 2 Vv LReLU
Conv. 512 4x4 1 v LReLLU
Conv. 1 4x4 1 - Ident
Layer #Filters Size Stride InstNorm Act.
Conv. 64 Tx7 1 v LReLLU
Conv. 128 3x%3 2 v LRelL.U
Conv. 256 3x3 2 v LReLLU
Conv. 512 3x%3 2 v LReLU
Res. 256 3x3 1 v LReLU
Res. 256 3x3 1 v LReLLU
Res. 256 3x3 1 v LRelLU
Res. 256 3x3 1 v LReLLU
Res. 256 3x3 1 v LReLU
Res. 256 3x3 1 v LReLU
Res. 256 3x3 1 v LReLU
Res. 256 3x3 1 v LRelLU
Res. 256 3x3 1 v LRelL.U
Deconv. 256 3x3 2 v LRelLU
Deconv. 128 3x%3 2 v LRelLU
Deconv. 64 3x3 2 v LRelLU
Conv. 3 IX7 1 v LReLLU

20 MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS

F Analytic projection of anisotropic 3D Gaussians
to 2D Gaussians

Here, for reference and completeness, we reproduce the projection function 7 from the sup-
plemental material of Sridhar et al. [8] within our setting. In the main paper, we declare a general
perspective pinhole camera with intrinsic matrix K, rotation R, and translation t such that camera
matrix P is represented as K[R,t]. We also declare K of unnormalized anisotropic 3D Gaussians
{Gk }le. Each Gaussian G, has mean vector p1; €R? and covariance matrix Xy e R¥.

The extrinsic camera parameters are the orientation Ry of the camera at position 0. They
transform each Gaussian (u,X) to the camera coordinate system by

T, =RyZiR, (©6)

Ho =Ry (1 —0), 7
where the camera is looking down the positive z axis. In our case, the camera’s position when
Ry =1is at z=2, with the object scaled in size to approximately fill the vertical view of the frame
under K with angle of view equal to 90°.

Sridhar et al. form a mathematical expression for the cone formed by rays drawn from o that
are tangent to the anisotropic Gaussian. All points on this cone satisfy

X' Mx=0, (8)
where the cone matrix M is
M=X," (4, =01y 5, — (o Z, 1ty — DE, . ©)

Points that form a projected ellipsoid on the canonical' image plane at z =1 must also satisfy
Eq. 8. Sridhar et al. derive an expression for this intersection, based on the matrix form of the
second-degree polynomial representation of a conic section

px2+qu+ry2+sx+ty+u=0; (10)

where x=[x;y;1]". This is equivalent to Eq. 8 with M as

[p q/2 s/2
M=|q/2 r t/2|. (1)
|s/2 t/2 wu

Let M;; denote the 2x2 submatrix excluding the ith row and jth column. The canonical
parameters of the projected ellipse are given by

~ 1 eq—2rs 1 [M31| (12)
dpr—q?|sq—2pt| |[Mz3| |—[Mas| |’
= M|
sro— I m (13)
IMas|

For a general camera with intrinsic matrix K, the projected ellipse (u?,XP) from the canonical
image plane is transformed to a general image plane. The transformed ellipse parameters are

w=Kazn™+[ki3,kp3] " (14)
2" =K3X K], (15)

where k;; here is the entry (i,) within the K matrix. These equations form our 3D space and
projection model.

1Unrelated to the canonical object model.

Citation
Citation
{Sridhar, Rhodin, Seidel, Oulasvirta, and Theobalt} 2014

MEJJATI ET AL.: GAUSSIGAN: CONTROLLABLE IMAGE SYNTHESIS 21

F.1 Camera discussion

A perspective camera was important to induce a consistent 3D space. As focal length dominates
K, and as it induces ‘zooming,” one might think that perspective effects could be handled by
rescaling and centering all images and masks. This may work for simpler ‘sphere-like’ objects
or orthographic data. However, our object shape complexity, such as the long and angled neck
of the giraffe, induces perspective variation under rotation, and a simpler camera model failed to
learn a smooth 3D camera and object space.

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

9

Kunihiro Baba, Ritei Shibata, and Masaaki Sibuya. Partial correlation and conditional correlation as mea-
sures of conditional independence. Australian & New Zealand Journal of Statistics, 46(4):657-664, 2004.

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escaping Plato’s cave: 3D shape from adversarial
rendering. In ICCV, pages 9984-9993, 2019.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas Geiger. Towards unsupervised learning of
generative models for 3D controllable image synthesis. In CVPR, 2020.

Dominik Lorenz, Leonard Bereska, Timo Milbich, and Bjorn Ommer. Unsupervised part-based
disentangling of object shape and appearance. In CVPR, pages 10955-10964, 2019.

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. HoloGAN:
Unsupervised learning of 3D representations from natural images. In /CCV, pages 7588-7597, 2019.

Srinath Sridhar, Helge Rhodin, Hans-Peter Seidel, Antti Oulasvirta, and Christian Theobalt. Real-time
hand tracking using a sum of anisotropic gaussians model. In 3DV, pages 319-326, 2014.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, and Eli
Shechtman. Toward multimodal image-to-image translation. In NeurIPS, 2017.

