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1 Supplemental Material
We include additional discussion covering the benefits over naive diffusion, consistency over

views within the 4D light field, tolerance to depth label errors and edge blur, robustness to hy-
perparameter variation, details of dataset preprocessing, and an example of textures within dark
backgrounds in the Stanford dataset (Section 1.1). Next, we present error maps comparing re-
projection loss versus our bidirectional diffusion approach (Section 1.3), and error maps versus
ground truth for the HCI dataset (Section 1.4). Finally, we show additional qualitative results on
the Stanford dataset (Section 1.2) and an additional editing example (Figure 20).

1.1 Additional Discussion
Naive Diffusion. In Figure 10, we demonstrate visually that naively diffusing disparity labels
can be problematic because edge localization is ambiguous.

Figure 10: Left: Naïvely diffusing disparity labels causes artifacts around edges due to ambiguity
in the localization of labels around edges. Right: Estimating the diffusion gradient removes this
ambiguity and yields sharp depth edges.
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Multi-view Depth and Error. As ground truth disparity is only provided for the central view
of the HCI data set, and as the Stanford data set has no ground truth depth, we did not include
quantitative error evaluation across ‘4D’ views. Qualitatively, our method tends to produce results
that are consistent across views (Fig. 11).

Figure 11: (a) We visualize depth consistency for the highlighted epipolar line. (b) Our results
are more consistent than Shi et al. [4] across views (EPIs are scaled vertically for clarity).

Disparity Noise and Blur Tolerance. To show our robustness, we evaluate our method on noisy
disparity labels (Fig. 12) and low-gradient edges (Fig. 13). Our method provides greater robustness
to disparity errors than naive diffusion, and provides greater robustness via MSE to low-gradient
(or blurry) edges than two learning-based baselines.

Figure 12: Robustness of our method to noise in disparity labels (Dino light field; we compare
with naive diffusion.).

Hyperparameter variation. Figure 14 demonstrates the variation in error as hyperparameter
values change. Across all parameters, our approach is stable around our declared values.

Lenslet Distortion and EPFL Lytro Dataset. The Lytro light fields in the EPFL dataset are
provided decoded as MATLAB files. In general, while our method can handle small amounts of
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Figure 13: Robustness of our method to low-gradient edges (Dino light field; we compare to the
methods of Zhang et al. [5] and Jiang et al. [2] which have the best MSE and Q25 performance
on this light field, respectively).

Figure 14: Effect of hyperparameter values on the MSE and Q25, averaged across the HCI dataset:
k and τ f (Eqn. 1), τv (Eqn. 2), t and α (entropy-based refinement), and σs, σd and σc (Eqn. 4). The
vertical lines indicate our chosen values. The stochasticity of our algorithm means the chosen values
may not be optimal in all cases. However, the method is stable to variation around these values.

distortion, the EPI-based edge detection stage expectedly fails when EPI features are no longer
linear. This is true for the edge views of Lytro light fields. As such, we only use the central 7×7
views of the EPFL scenes for all experiments.

Black Backgrounds and Stanford Dataset. Our EPI edge detector aggregates information
from all three channels in CIE LAB color space, which allows it to detect even faint edges. Thus,
it captures the subtle background texture on the black cloth in the Stanford dataset examples of
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Figure 15: Top: On the Stanford Bunny scene, enhanced image contrast shows the texture of the
cloth in the seemingly black background. Bottom: In EPI space (scaled vertically for clarity) the
texture appears as sloped lines, providing background disparity to methods that can exploit this
subtle information.

single objects; typically, this detail is not visible to the naked eye. This feature of our work also
explains why we do not incorrectly detect false edges in the Lego Technic Plow scene, as shown
in Figure 7 of the main paper.

1.2 Expanded Results
We present qualitative results on the HCI dataset in Figure 16, and expanded results on the real-
world light fields of the Stanford dataset in Figure 19. Our method produce stronger depth edges
compared to the baselines, and our smoothness regularization (Equation 10, main paper) leads to
fewer artifacts in textureless regions.

1.3 Diffusion Gradients as Self-supervised Loss
As in main paper Section 4, we compare our method to a reprojection error loss. In Figure 17,
to complement the quantitative MSE numbers in the main paper, we demonstrate the qualitative
improvement from our bidirectional diffusion gradient approach in comparison.

1.4 Error Maps
We visualize the absolute disparity error of all baselines and our method in Figure 18. The baseline
methods produce larger errors around depth edges compared to our approach. This can be seen
in the fewer regions of red for our method compared to the baselines. The corresponding dense dis-
parity maps are shown in Figure 16. Qualitatively, our results are comparable to the learning-based
baselines [2, 3, 4] with fewer extreme errors around edges.
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Figure 16: Results on the synthetic light fields of the HCI dataset. Left to right: Jeon et al. [1],
Zhang et al [5], Jiang et al. [2], Shi et al. [4], Li et al. [3], our method, and finally, the ground
truth. Qualitatively, our results are comparable to the learning-based baselines [2, 3, 4] with fewer
extreme errors around edges.
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Figure 17: Multiview reprojection error (center) as self-supervised loss for depth edge localization,
compared to our bidirectional diffusion gradients (right). We show absolute disparity error. Our
method has lower error around edges.
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Figure 18: A visualization of the absolute disparity error for all baselines. Top to bottom: Jeon
et al. [1], Zhang et al [5], Jiang et al. [2], Shi et al. [4], Li et al. [3], and our method.
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Figure 19: Results on light fields from the Stanford dataset. Top to bottom: Jeon et al. [1], Zhang
et al [5], Jiang et al. [2], Shi et al. [4], Li et al. [3] and our method.

Figure 20: Additional light field editing result. Left: input scene. Center: Our editing results. Right,
clockwise from top-left: Detail of the unmodified light field image, Zhang et al. [5]’s editing result,
Shi et al. [4]’s editing result, and our result with fewer artifacts.
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