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Supplementary Materials

We provide:
¢ Qualitative results on NTU RGB+D
* More implementation details of downstream tasks
 Training and testing sets on QMAR

* The most recent state-of-the-art approaches on NTU RGB+D from CVPR 2021

1 Qualitative Results on NTU RGB+D

In Fig.1, we illustrate qualitative reconstruction results of our approach when applied on
unseen viewpoints for RGB-based Densepose and depth images from the NTU dataset.

2 Action Classification and Human Movement Analysis

Our proposed auto-encoder is learned to represent unsupervised 3D pose features without
using any action labels. To encapsulate the temporal element of the action recognition and
human movement analysis downstream tasks, we used our view-invariant pose encoder E¢
and added a two-layer bidirectional gated recurrent unit (GRU) followed by one FC layer
after it (Please see Fig.2), and the spatio-temporal model was trained on fixed-size 16-frame
input sequences with the cross-entropy loss function.

Implementation Details — The size of hidden state of GRU was set on 1024 in our experi-
ments, and we implemented our model in Pytorch and trained it for 50 epochs using Adam
[1] with an initial learning rate of 0.0002, and batch size 20. During training, we applied
random cropping for data augmentation.
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Figure 1: The reconstruction results of our approach on some samples of NTU. Every row
shows the simultaneous frames belong to the the same scene from different viewpoints, views
1-3, and for RGB-based Densepose and depth modalities. The red boxes denote training
frames and the blue one indicates their corresponding frame captured from unseen viewpoint.
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Figure 2: Our model to exploit temporal elements of the proposed view-invariant pose rep-
resentations for action recognition and human movement analysis downstream tasks.

3 Training and Testing Sets on QMAR

QMAR [4] has been captured from 6 different views, three frontal views at —45°, 0° and 45°
and three side views at 45°, 90° and 135°. The dataset contains RGB images for all views
while Depth data are available only for views at 0°, 90°. For evaluation, we obtained the
RGB results under CV and CS protocols. For CS, we used the same training and testing sets
as in [4], and for CV, the data from viewpoints 0° and 90° were used for training while the
rest of viewpoints were applied for testing.
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4 The Most Recent State-of-the-art Approaches on NTU
RGB+D from CVPR 2021

Table 1 shows results of the most recent state-of-of-the-art representation learning approaches
on NTU from CVPR 2021. Among these methods [2, 3] that obtained unsupervised results
are based on 3D skeleton data, whereas our proposed method is trained and tested from
2D images. In [5], although the proposed approach is applied on RGB-based 2D pose in
inference, it still requires 3D skeleton data in their training process.

Method Backbone Pre-train Input Supervised (%) | Unsupervised (%)
Training Inference | CV CS CvV CS
U-S-VAE [3] LSTM NTU 3D Pose 3D Pose - - 64.88 50.96
Lietal. [2] v GCN NTU 3D Pose 3D Pose 92.5 86.2 84.3 77.8
CV-MIM [5] v | 1D CNN Human3.6M | 2D + 3D Pose 2D Pose 89.5 71.8 - -

Table 1: State-of-the-art action recognition accuracy results on NTU from CVPR 2021. The
v' symbol highlights view-invariant methods. The best and the second-best results are in
Bold and underline respectively.
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