
18 WANG et al.: INTRINSIC EXAMPLES: ROBUST FINGERPRINTING OF DNNS.

Appendices

A Weight pruning

Filter	
...

Filter	
...

Filter	

Channels

Channel	

...
...

Filter	
Filter	
Filter	

...
...

...
...

Channel	 Channel	

Filter	
...

Channels

Filter	
...

Channels

Filter	

Channels

Channel	

...
...

Filter	
Filter	
Filter	

...
...

...
...

Channel	 Channel	

Filter	
...

Channels

Filter	
...

Filter	

Channel	

...
...

Filter	
Filter	
Filter	

...
...

...
...

Channel	 Channel	

Channel	

...
...

Filter	

Filter	

Filter	

Channel	

...
...

Channel	

...
...

...
...

...
...

...
...

(a)	Unstructured	sparsity	by	irregular	pruning (b)	Structured	sparsity	by	filter	pruning (c)	Structured	sparsity	by	column	pruning
(d)	Fine-grained	structured	sparsity

by	pattern-based	pruning

...
...

Channels ChannelsChannels Channels

Figure A1: Various DNN sparsity schemes by weight pruning.

Figure A1 illustrates weight pruning methods using a CONV layer with M filters, each
consisting of 3 channels with the kernel size of 3⇥3. "Kernels" and "channels" can be used
interchangeably. The most common kernel size is 3⇥ 3, while the number of channels can
go much beyond 3.

Figure A1 (a) shows the unstructured sparsity scheme by the irregular pruning method
[19, 42, 72], where the upper part is directly in the weight tensor format and the lower part is
in the General Matrix Multiplication (GEMM) matrix format. The GEMM routine is widely
used for CONV layer operations on some computing platforms such as embedded systems
and mobile devices [10]. Irregular pruning method prunes weights at arbitrary locations. It
can achieve very high pruning rate, but the unstructured weight sparsity is not compatible
with data parallel executions on the computing platforms.

Figure A1 (b) is a structured sparsity scheme by the filter pruning method [20, 41, 64],
and Figure A1 (c) is a structured sparsity scheme by the column pruning method [37, 73].
Filter pruning, as suggested by the name, prunes whole filters from a layer.1 Column pruning
prunes weights for all filters in a layer, at the same locations. In the GEMM matrix format,
filter pruning prunes whole rows of weights, and column pruning prunes whole columns of
weights. The structured sparsity maintains the full matrix format with reduced dimensions,
thus accelerating on-device inference for the resource-constrained computing platforms.

Figure A1 (d) shows a fine-grained structured sparsity scheme by the pattern-based prun-
ing method [43, 49, 67], which is a combination of kernel pattern pruning and connectivity
pruning. In kernel pattern pruning, for each kernel in a filter, a fixed number of weights
are pruned, and the remaining weights form specific kernel patterns. The example in Figure
A1 (d) is defined as 4-entry kernel pattern pruning, since every kernel reserves 4 non-zero
weights out of the original 3⇥3 kernels. The connectivity pruning cuts the connections
between some input and output channels, which is equivalent to removing corresponding
kernels. Note that the pattern-based pruning is not based on the GEMM matrix format.

B Comparison with Adversarial Examples
Although our proposed intrinsic examples leverage similar algorithms (e.g., PGD) as those
for generating adversarial examples, in Table A1 we demonstrate the stronger transferability

1Note that some references mention channel pruning [20], which by the name prunes some channels completely
from the filters. Channel pruning is essentially equivalent to filter pruning, since pruning some filters in a layer
invalidates the corresponding channels of the next layer.

Citation
Citation
{Han, Pool, Tran, and Dally} 2015

Citation
Citation
{Liu, Sun, Zhou, Huang, and Darrell} 2018{}

Citation
Citation
{Zhang, Ye, Zhang, Tang, Wen, Fardad, and Wang} 2018{}

Citation
Citation
{Chetlur, Woolley, Vandermersch, Cohen, Tran, Catanzaro, and Shelhamer} 2014

Citation
Citation
{He, Zhang, and Sun} 2017

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017{}

Citation
Citation
{Wen, Wu, Wang, Chen, and Li} 2016

Citation
Citation
{Liu, Ma, Xu, Wang, Tang, and Ye} 2019

Citation
Citation
{Zhang, Zhang, Ye, Li, Tang, Wen, Lin, Fardad, and Wang} 2018{}

Citation
Citation
{Ma, Guo, Niu, Lin, Tang, Ma, Ren, and Wang} 2020

Citation
Citation
{Niu, Ma, Lin, Wang, Qian, Lin, Wang, and Ren} 2020

Citation
Citation
{Yang, Faraj, Hussein, and Gaudet} 2018

Citation
Citation
{He, Zhang, and Sun} 2017



WANG et al.: INTRINSIC EXAMPLES: ROBUST FINGERPRINTING OF DNNS. 19

of intrinsic examples than adversarial examples, from the pretrained model Fq to the imple-
mented model Fq 0 , which is derived by the unstructured pruning method on Fq .

We use the (dense) CNN as the pretrained model and perform weight pruning with dif-
ferent pruning ratios. Intrinsic score (i.e., accuracy) by the intrinsic examples and attack
success rate (i.e., accuracy) by the adversarial examples are shown in the table.

Algorithm Dense
Model

Models by Unstructured Pruning
[19] with Various

Pruning Ratios
Pruning

Ratio / 80% 90% 95% 97%

Model
Acc. 80.5% 80.3%

(-0.2)
80.3%
(-0.2)

79.7%
(-0.8)

78.5%
(-2.0)

Alg.1
(intrinsic score) 100% 98% 88% 64% 36%

Alg.2
(intrinsic score) 100% 100% 100% 100% 73%

Alg.3
(intrinsic score) 100% 100% 100% 83% 54%

Adversarial example
(attack success rate) 100% 83% 76% 52% 33%

The experiment is evaluated on 200 examples generated from CIFAR-10
dataset.

Table A1: Intrinsic Score by Intrinsic Examples and Attack Success Rate of Adversarial Examples
Using CIFAR-10 Dataset with Whole Model Weight Pruning. The second column is for pretrained
model, and the third to sixth columns are for pruned models.

C Training Loss

Figure A2 shows the training loss during the min-max robust optimization process, where
fluctuations due to the inner maximization steps are observed while following an overall
decreasing trend.

Figure A2: Training Loss with respect to total number of steps for Algorithm 3.

D Experiment Settings

In this section, we summarize the details of datasets and models used in our experiments
in Table A2. We also conclude our experiment settings for model compression methods in
Table A3.

Citation
Citation
{Han, Pool, Tran, and Dally} 2015



20 WANG et al.: INTRINSIC EXAMPLES: ROBUST FINGERPRINTING OF DNNS.

Dataset Task Model # Layers # Conv # FC

CIFAR-10 Image
Classification CNN 6 4 2

SVHN Image
Classification CNN 6 4 2

ImageNet Image
Classification VGG-16 16 13 3

Table A2: Details of Datasets and Models Used.

Dataset Model Test Accuracy
of Pretrained

Model

Generation
Algorithms

Weight Pruning Weight Quantization
Unstructured

Pruning
Irregular
Pruning

Column
Pruning

Pattern
Pruning Deciminal Float16 Full

Integer

CIFAR-10 CNN 80.5% Algorithm 1, 2, 3
p p p p p p p

VGG16 79.5% Algorithm 1, 2, 3
p p p p p p p

SVHN CNN 92.8% Algorithm 1, 2, 3
p p p p p p p

ImageNet VGG16 Top1: 74.6% Algorithm 1, 2, 3
p p p

Top5: 92.4%

Table A3: Datasets, Models, and Model Compression Methods used for Evaluating Intrinsic Examples.
Here the accuracy of intrinsic examples on the pretrained model is 100%.

E Experimental Results for Model Compression on SVHN
dataset

Table A4 and A5 demonstrate our results using three intrinsic example generation algorithms
to verify the functionality in two pruning modes: pruning the whole model or pruning only
one layer. And Table A6 presents the verification results in three quantization modes: deci-
mal quantization, float16 quantization and fullinteger quantization.

F Functionality Indication
We test and record the intrinsic score using different number of intrinsic examples for un-
structured pruned models with various pruning ratios. Figure A3 demonstrate our results
using Algorithm 1, 2, and 3. For each data point in Figure 4 we generate a number N of in-
trinsic examples and test the intrinsic score, and this process is conducted10 times to obtain
the mean and variance of intrinsic score for each number N, as denoted by the solid line and
shadow area in Figure A3. and obtain the mean and variance of intrinsic score, as denoted
by the solid line and shadow area.

Algorithm Dense
Model Unstructured Pruning [19] Irregular Pruning [72] Column Pruning[20] Pattern Pruning[49]

Pruning
Ratio / 80% 90% 95% 97% 70% 80% 90% 95% 50% 60% 70% 80% 70% 80% 90% 95%

Model
Acc. 92.8% 92.9%

(+0.1)
92.8%

(0)
92.5%
(-0.3)

92.7%
(-0.1)

92.5%
(-0.3)

92.4%
(-0.4)

91.8%
(-1.0)

89.8%
(-2.0)

92.1%
(-0.7)

91.0%
(-1.8)

91.2%
(-1.6)

82.4%
(-10.4)

92.3%
(-0.5)

92.4%
(-0.4)

92.2%
(-0.6)

92.2%
(-0.6)

Baseline(0.025) 100% 68.5% 52% 21.5% 22.5% 4% 4% 6% 5% 6% 6.5% 8% 7% 5.5% 5% 7% 6%
Baseline(0.05) 100% 77% 63% 51% 39% 8% 8.5% 6.5% 8% 10% 10.5% 6.5% 8% 6.5% 6% 5.5% 5.5%
Baseline(0.1) 100% 70% 61.5% 46.5% 37.5% 5% 5.5% 4.5% 7% 5% 7.5% 7.5% 7.5% 5.5% 5.5% 10% 6.5%

Alg.1 100% 99.5% 98.5% 94% 93.5% 100% 100% 98.5% 86% 99.5% 95% 92% 50.5% 99% 98.5% 98% 99%
Alg.2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 92% 100% 100% 100% 100%
Alg.3 100% 100% 100% 99% 96% 100% 100% 100% 95.5% 100% 99% 98.5% 86.5% 100% 100% 99% 99%

The intrinsic score by each algorithm is evaluated on 200 intrinsic examples generated from the CNN trained with SVHN Dataset.

Table A4: Intrinsic Score of Implemented Models by Different Weight Pruning Methods on the CNN
with SVHN Dataset (whole model pruning): We use the (dense) CNN model as the pretrained model
and perform different weight pruning methods to derive implemented models with various pruning
ratios. Intrinsic score is the accuracy of intrinsic examples on each implemented model.

Citation
Citation
{Han, Pool, Tran, and Dally} 2015

Citation
Citation
{Zhang, Ye, Zhang, Tang, Wen, Fardad, and Wang} 2018{}

Citation
Citation
{He, Zhang, and Sun} 2017

Citation
Citation
{Niu, Ma, Lin, Wang, Qian, Lin, Wang, and Ren} 2020



WANG et al.: INTRINSIC EXAMPLES: ROBUST FINGERPRINTING OF DNNS. 21

Algorithm Dense Model Unstructured Pruning [19] Irregular Pruning [72] Column Pruning [20]
Pruning Ratio / 80% 85% 90% 95% 90% 95% 97% 99% 90% 95% 97% 99%

Model
Acc. 92.8% 92.5%

(-0.3)
92.8%

(0)
92.9%
(+0.1)

92.8%
(0)

92.6%
(-0.2)

92.6%
(-0.2)

92.5%
(-0.3)

86.3%
(-6.5)

92.6%
(-0.2)

92.5%
(-0.3)

92.4%
(-0.4)

85.4%
(-7.4)

Baseline (0.025) 100% 73.5% 69% 61% 62% 45% 40.5% 32% 18% 10.5% 9.5% 8% 6%
Baseline (0.05) 100% 78% 72.5% 70% 70.5% 51% 42% 40.5% 21.5% 16% 13% 12.5% 10%
Baseline (0.1) 77% 73% 72% 72% 68% 60% 53.5% 46% 20% 15% 10.5% 9% 9%

Alg.1 100% 99.5% 100% 99.5% 100% 99.5% 100% 100% 88.5% 100% 99.5% 99.5% 88%
Alg.2 100% 100% 100% 99.5% 100% 100% 100% 100% 91% 100% 100% 100% 90%
Alg.3 100% 100% 100% 100% 100% 100% 100% 100% 92.5% 100% 100% 100% 92.5%

The intrinsic score by each algorithm is evaluated on 200 intrinsic examples generated from the CNN trained with SVHN Dataset.

Table A5: Intrinsic Score of Implemented Models by Different Weight Pruning Methods on the
CNN with SVHN Dataset (single layer weight pruning): We use the (dense) CNN model as the
pretrained model and perform different weight pruning methods to derive implemented models with
various pruning ratios. Intrinsic score is the accuracy of intrinsic examples on each implemented
model.

(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3
Figure A3: Intrinsic score w.r.t the number of examples on the CIFAR-10 dataset. (a) Intrinsic exam-
ples generated using Algorithm 1. (b) Intrinsic examples generated using Algorithm 2. (c) Intrinsic
examples generated using Algorithm 3. Each line in the sub-figure represents an unstructured pruned
neural network.

Citation
Citation
{Han, Pool, Tran, and Dally} 2015

Citation
Citation
{Zhang, Ye, Zhang, Tang, Wen, Fardad, and Wang} 2018{}

Citation
Citation
{He, Zhang, and Sun} 2017



22 WANG et al.: INTRINSIC EXAMPLES: ROBUST FINGERPRINTING OF DNNS.

Algorithm Pretrain
Model

Decimal Float16 Full
Integer3 places 2 places 1 place

Model
Acc. 92.8% 92.8%

(0)
92.7%
(-0.1)

87.5%
(-5.3)

92.8%
(0)

92.2%
(-0.5)

Alg.1 100% 100% 100% 94.5% 100% 100%
Alg.2 100% 100% 100% 100% 100% 100%
Alg.3 100% 100% 100% 98.5% 100% 100%

Table A6: Intrinsic Score of Implemented Models by Different Weight Quantizationn Methods on the
CNN with SVHN Dataset.

G Results on ImageNet Dataset
Figure A4 visualizes intrinsic examples with the same label "mushroom" generated by Algo-
rithm 1 and Algorithm 2, with different e values. As we can observe, for images from Algo-
rithm 1, it is difficult to figure out its expression based on the textures and pattern. However,
image patterns of mushrooms from Algorithm 2 can be clearly observed, reflecting a match-
ing between the high-level semantics and the low-level image features. We summarize the
performance of intrinsic examples for functionality verification for different weight pruning
and quantization methods as shown in Table A7. We can observe that intrinsic scores of
Algorithm 2 outperforms Algorithm 1 for all models, showing its superiority of accurately
verifying the acceptable modifications compared with Algorithm 1. Meanwhile, in the case
of heavy compression with significant accuracy drop, a relatively low intrinsic score can be
obtained (such as 34% from Algorithm 1 and 80% from Algorithm 2 in the case of deci-
mal quantization with 1 place), indicating the unsatisfied performance from the compressed
model. The high correlation between the intrinsic score and testing accuracy demonstrates
that intrinsic examples can verify the model functionality for large scale image recognition
task with a much fewer number of examples.

Figure A4: Generated intrinsic examples on ImageNet dataset. First Row: Intrinsic examples gen-
erated using Algorithm 1. Second Row: Intrinsic examples generated using Algorithm 2. Below
we show the input clipping range e for the two algorithms. For Algorithm 2, we also set the weight
perturbation bound d = 0.05 during the generation process. The label assigned to all these image is
“mushroom”.



WANG et al.: INTRINSIC EXAMPLES: ROBUST FINGERPRINTING OF DNNS. 23

Alg. Dense
Model

Unstructured
Pruning

Pattern
Pruning

Decimal
Quantization

30% 60% 55.6% 77.4% 85.7% 87.5% 3 places 2 places 1 place

Acc. Top1: 74.6%
Top5: 92.4%

74.3%
(-0.3)

74%
(-0.6)

74.6%
(0)

74.3%
(-0.3)

73.9%
(-0.7)

73.7%
(-0.9)

74.5%
(-0.1)

72.7%
(-1.9)

67.3%
(-7.3)

Alg.1 100% 85% 54.5% 100% 98% 96.5% 91% 67% 50% 34%
Alg.2 100% 100% 97.5% 100% 100% 100% 100% 100% 89% 80%

The experiment is evaluated on 200 intrinsic examples for each method generated from ImageNet Dataset.
Table A7: Intrinsic Score of Implemented Models by Different Model Compression Methods on VGG-
16 with ImageNet Dataset.

H Limitation and Discussion
In our threat model, we assume the client (model owner) does not release the training data
of the pretrained model to the system designer or anyone else, because the training data is
the even more important intellectual property than the trained models. Such assumption also
eliminates another threat scenario that some third-party entity performs the backdoor attack
[17] on the pretrained model, because performing the backdoor attack does require access to
the training dataset.

If we lift the constraint to allow the client to release the training dataset, our intrinsic
examples are unable to detect the integrity breach by the backdoor attack, as the backdoored
model has high normal testing accuracy and shows mis-behaviors only in presence of the
specific trigger pattern, which is embedded into the training dataset and model. There is
an existing work [59] focusing on identification and mitigation of DNN backdoor attacks,
which can complement our intrinsic examples allowing for more general threat model.

If we would like to extend the intrinsic examples to incorporate the capability of model
integrity breach detection, we may need to use Grad-CAM [54] for its visual and qualitative
evaluation capability. Instead of generating intrinsic examples for the pretrained model and
testing on the implemented model, we may need to generate intrinsic examples for the im-
plemented model and exam the intrinsic examples with Grad-CAM. Because we only have
black-box access to the implemented model, we may incorporate zero-th order optimization
[38] when generating intrinsic examples for the black-box implemented model.

Furthermore, we may extend our intrinsic examples to other deep learning tasks such as
object detection, speech recognition, and action recognition. We need to deal with large-
scale datasets and models in those tasks, and therefore for our proposed Algorithms 2 and 3,
we should identify the most effective layers to add weight perturbations.

Citation
Citation
{Gu, Dolan-Gavitt, and Garg} 2017

Citation
Citation
{Wang, Yao, Shan, Li, Viswanath, Zheng, and Zhao} 2019{}

Citation
Citation
{Selvaraju, Cogswell, Das, Vedantam, Parikh, and Batra} 2017

Citation
Citation
{Liu, Chen, Chen, and Hero} 2018{}


