
M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING 1

Supplementary Material for Learning Neural
Transmittance for Efficient Rendering of
Reflectance Fields
Mohammad Shafiei1

moshafie@ucsd.edu

Sai Bi1,2

bisai@cs.ucsd.edu

Zhengqin Li1

zhl378@ucsd.edu

Aidas Liaudanskas3

aliaudanskas@fyusion.com

Rodrigo Ortiz-Cayon3

rcayon@fyusion.com

Ravi Ramamoorthi1

ravir@ucsd.edu

1 University of California San Diego
2 Adobe Research
3 Fyusion Inc.

1 Architecture.
Our neural network architecture is identical to that used by Mildenhall et al. [2] and Bi et
al. [1]. The architecture is depicted in Figure 1.

,
a

b

Positional encoding
(10 bands)

Fully connected
neural network

Network output

Input/Output

Concatenation

Figure 1: We use the same neural network architecture as that of Mildenhall et al. [2] and Bi
et al. [1].

2 Transmittance map
In the main paper, we proposed efficient rendering with precomputed transmittance map
(main paper section 4.2). Creating transmittance map is described by Algorithm 1. After
its creation, it can be used to compute the transmittance for each point of interest xxx and
rrr. To this end, we first find the four closest rays to xxx, namely QQQ = {rrr0,rrr1,rrr2,rrr3} and the
closest points to xxx that reside on those ray, denoted as X = {xxx0,xxx1,xxx2,xxx3}. Then we find the

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020



2 M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING

transmittance value for points in X as described in Algorithm 2. Having the transmittance
of four closest points to xxx, we can use interpolation to compute the transmittance on point xxx
as in Algorithm 3.

Algorithm 1: Transmittance map (references are to the main paper)
xxxi← ith pixel of a virtual image plane with m pixels
pppi← ith point of a set uniformly sampled on a circle
Result: (ai,bi) ∈ {1, ...,m}
foreach i ∈ {1,2...,m} do

if Light source is point light then
qqq← Compute two-spheres parameters of pixel xxxi (sec. 4)
{ai,bi}← {a(qqq),b(qqq)} (sec. 4)

else if Light source is directional then
ppp′i← Rotate pppi toward light
qqq← Compute two-spheres parameters of point ppp′i in direction of ωωω i (sec. 4)
{ai,bi}← {a(qqq),b(qqq)} (sec. 4)

end
end

Algorithm 2: Nearest rays and points on transmittance map (references are to the
main paper)

Result: (qqqi, ti)i ∈ {1,2,3,4}
ωωω i← light direction on point ppp
foreach i ∈ 1,2,3,4 do

if Light source is point light then
xxx← Project ppp to virtual image plane
yyyi← Find ith nearest points on image plane to xxx
qqq← Compute two-spheres parameters of pixel yyyi (sec. 4)
qqq′← Intersect the orthogonal plane to ωωω i that passes point ppp with qqq
ti = ‖ooo′(qqq)−q′‖ (eq. 5)
τi← τ(qqq, ti) (eq. 7)

else if Light source is directional then
ppp′← Project ppp on orthogonal plane to ωωω i
uuu← Rotate ppp′ to xy plane
vvvi← Find ith closest rays
qqq← Intersect the orthogonal plane to ωωω i that passes ppp with ray vvvi
ti←‖q− p′‖
τi← τ(qqq, ti)

end
end



M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING 3

Algorithm 3: Transmittance map and interpolation step (equation references are to
the main paper)

Result: τ(ppp,ωωωo)
l← number of light sources
n← number of sampled points in space
PPP set of all sampled points along view direction
aaa,bbb← initialize transmittance map alg. 1
foreach i ∈ {1,2, ..., l} do

foreach ppp ∈ PPP do
QQQ← four nearest rays to ppp towards ith light source alg. 2
//Compute transmittance on neighboring rays
foreach qqq ∈ QQQ do

q′← find a point on ray qqq close to rrr(t) alg. 2
tk← distance of qqq′ to ray origin (eq. 5)
τk,← τ(qqq, tk) (eq. 7)

end
//Compute τ(ppp,ωωωo) by bilinear interpolation
uuu =

ppp0−ppp1
‖ppp0−ppp1‖

vvv = ppp0−ppp2
‖ppp0−ppp2‖

ααα = 〈ppp−qqq0,uuu〉
βββ = 〈ppp−qqq0,vvv〉
τt ← αααxτ0 +(1−αααx)τ1
τb← αααxτ2 +(1−αααx)τ3
τ(ppp,ωωωo)← βββ yτt +(1−βββ y)τb

end
end

3 Additional Results

Neural Transmittance. Our method is based on the assumption that, objects in the scene
are opaque. More specifically, the transmittance function for an opaque scene can be well
modelled by a logistic function. Our proposed Neural Transmittance Function (Equation 7
in the main paper) estimates the transmittance along a ray by two parameters namely slope a
and center b. We compare the neural transmittance to the transmittance function computed
by NRF [1] in Figure 2. NRF [1] computes the transmittance by the volume density values
queried from a neural network. These queries are made for the sampled points along a
ray in the ray marching step. Then, these values are used for numeric integration. While
in the Neural Transmittance Function, we simply estimate the transmittance values for the
same points by the prediction of function parameters a and b. These parameters allow us
to compute the transmittance without ray marching. In Figure 2 we compare our Neural
Transmittance Function to the transmittance computed by NRF [1] in different stages of
training. In the early stages and before convergence the both functions are smooth. In the
late stages, the both functions look like a logistic function with large slope. This figure is
a plot of the transmittance values of points along a ray in different stages of optimization.
The ray is chosen from a training image of the Sitting Buddha scene which passes from the

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020



4 M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

Neural Transmittance
NRF

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

Neural Transmittance
NRF

(a)

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

(b)
2.5 3.0 3.5 4.0 4.5

t

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

itt
an

ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

Neural Transmittance
NRF

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

(c)

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

itt
an

ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

Neural Transmittance
NRF

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

2.5 3.0 3.5 4.0 4.5
t

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
itt

an
ce

(d)

Figure 2: Numerically computed transmittance (red curve) is smooth in the early stages of
training (a,b and c) and gradually converges to nearly a step function (d). Neural transmit-
tance function (blue curve) fits well to the numerically computed transmittance, while this
function is simultaneously trained with those of NRF (training details explained in Section
4.1 in the main paper). (a),(b),(c) and (d) are respectively generated after 6000, 12000, 30000
and 670000 iterations.

geometry.
Runtime and complexity. Relighting a scene with NRF is a time consuming process

especially for the case of environment map rendering. We compare the time-complexity of
our precomputation method to that of Bi et al. [1] in Table 1. We also compare the runtime
of the precomputation step for our method compared to NRF in Figure 3. Our method is
significantly faster for various scenes.

Ablation. We show the effect of our augmentation method in Figure 4. Relighting the
globe scene without augmentation leads to clear artifacts.

Visual comparison. We visually compare our method with Bi et al. [1] in Figure 4. This
figure includes relighting real and synthetic scenes under point light and an environment
map.

References
[1] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan,

Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. Neural reflectance

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020



M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING 5

Naive NRF Ours AG Ours TM
l ·n2 · c l ·m ·n l ·m ·n l ·m

Table 1: Time-complexity of relighting a scene with an environment map. l,m,n and c are
respectively the number of pixels on an environment map, pixels on a virtual camera on each
light source, samples on a ray and pixels on the camera.

Figure 3: Runtime of our method (broken lines) compared to NRF (solid lines) for evaluat-
ing transmittance map and transmittance volume [1]. Transmittance map is faster to compute
compared to transmittance volume for 3 different scenes each with a unique image resolu-
tion. The vertical axis is runtime in seconds and the horizontal axis is the resolution of
environment maps in pixels. The lines corresponding to our method almost overlay each
other on this plot.

Citation
Citation
{Bi, Xu, Srinivasan, Mildenhall, Sunkavalli, Ha{²}an, Hold-Geoffroy, Kriegman, and Ramamoorthi} 2020



6 M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING

(a) (b) (c)

(d) (e)

Figure 4: We can relight the scene with our method (e) faster than NRF (b) and with less
artifacts compared to NeRV visibility function (d). Our augmentation approach removes the
artifacts caused by overfitting of neural transmittance on input images (c).



M. SHAFIEI, S. BI, ET AL.: NEURAL TRANSMITTANCE FOR EFFICIENT RENDERING 7

fields for appearance acquisition. arXiv preprint arXiv:2008.03824, 2020.

[2] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In ECCV, 2020.


