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Move to See Better: Self-Improving
Embodied Object Detection
— Supplementary Materials

BMVC 2021 Submission # 615

1 Overview

The structure of this supplementary file is as follows: Section 2 provides a more detailed
analysis of the method by performing ablation and comparison experiments. Section 3 in-
cludes additional visualizations to help better understand the both method’s strengths and
limitations. Section 4 includes some further details on the implementation. We also in-
clude a video named “sup_vid_615.mp4” with additional 3D visualizations and urge the
reviewers to refer that as well.

2 Experiments and Ablations

2.1 Weakly-Supervised Novel Object Detection

mAP@IoU Method Name Cushion Nightstand Shelf Beanbag Avg

0.5 SbM-ws Trained 93.62 81.25 24.38 82.18 70.35
Limited GT Trained 87.24 79.79 16.40 88.77 68.04

0.3 SbM-ws Trained 94.23 81.25 25.61 82.18 70.81
Limited GT Trained 87.24 79.79 16.40 88.77 68.04

Table 1: SbM-ws labels can be used to train detectors on novel categories. We compare
the performance of the detector trained on labels produced by SbM-ws with the detector
trained on ground truth labels. The results show that the detector trained on SbM-ws labels
outperforms the on trained on limited ground truth labels.

Since embodied agents typically encounter novel objects while exploring, we applied our
method to detect novel categories with a small number of human annotations.

We show that our method can perform pseudo-label generation when we have weak
ground-truth 2D annotations, enabling us to generate high quality labels for non-COCO

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091

2 AUTHOR(S): MOVE TO SEE BETTER

instances and categories where the pre-trained detector fails. In our weakly supervised ex-
periments, we only provide a ground truth annotation for one out of the 25 available views
for each object instance. We denote this setup as SbM-ws.

We provide weak supervision for four novel non-COCO objects: Cushion, Nightstand,
Shelf and Beanbag. To make a fair comparison, we compare the performance of the detector
fine-tuned on pseudo-labels with the detector fine-tuned on ground truth labels for all views.
The results of the experiment are shown in Table 1. We see that the detector trained on SbM
pseudo-labels outperforms the detector trained on the limited ground truth data. This is be-
cause our method effectively creates more training data by propagating the weak supervision
to more views.

2.2 Pre-trained Detector Quality

Shelf predicted as Fridge Couch Predicted as Bed Chair predicted as Toilet

Building predicted as Bus Confident but inaccurate mask

Figure 1: Incorrect detections by pre-trained detector with high confidence. We show
three examples where the pre-trained detector incorrectly classify the object with high con-
fidence.

As mentioned in the paper, a possible limitation of our method is that in order to prop-
agate high-quality labels, the pre-trained detector must detect objects correctly with high
confidence. In novel environments and viewpoints, the pre-trained detector sometimes de-
tects wrong objects with high confidence, as shown in Figure 1. In this experiment, we ask
the following question: is the confidence score of the pre-trained detector reliable?

To investigate this question, we set different confidence score thresholds θ for the pre-
trained detector and report their precision, recall, and mAP@IoU=0.5 on CARLA training
set. The results are shown in Table 2. We observe that although the detector’s confidence
does not serve as a perfect cue all the time, it is calibrated enough for our method’s assump-
tion to hold. Therefore, by setting a high confidence threshold we are able to obtain high
precision detections. Our 3D segmentation then propagates the high precision detections to
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all views, resulting in pseudo-labels with both high precision and high recall, as shown in
the last column in Table 2. We also note that recent works [2] have shown promising results
in training classifiers that are well-calibrated while preserving the performance.

Setting Precision Recall mAP@0.5

Pre-trained, θ = 0.5 83.97 81.91 68.05
Pre-trained, θ = 0.6 85.66 80.43 68.96
Pre-trained, θ = 0.7 87.46 76.74 67.60
Pre-trained, θ = 0.8 89.58 70.71 64.06
Pre-trained, θ = 0.9 92.41 60.99 57.23

Pseudo-labels, θ = 0.9 92.92 92.76 86.88

Table 2: The pre-trained detector is overall well-calibrated. We set different confi-
dence score thresholds for the pre-trained detector and report their precision, recall, and
mAP@IoU=0.5 on CARLA training set.

2.3 Design Choice of 3D Segmentation

In our method, we employ a simple yet effective two-stage 3D segmentation method for its
fast runtime and strong performance. In this experiment, we ask the following question: will
an alternative “deep” segmentation method improve the performance, without sacrificing
runtime?

To investigate this question, we replace the unary classifier in our segmentation module
with a PointNet [5]. For each scene, an input sample to the PointNet is a random subset
of P ∈ RMi×6 with Mi being the number of pixels with an associated depth value. We sam-
ple randomly while making sure that in each sample there exist both points from Pf g and
Pbg. During training, loss is only computed for points from Pf g and Pbg. We also ablate
the effectiveness of our refinement stage with CRF, reporting the performance both with and
without CRF refinement. We perform this experiment on CARLA training set to evaluate the
resulting pseudo-label quality. The results are shown in Table 3. We observe that PointNet
improves marginally compared to the SVM alone, while being about 280× slower. Adding
CRF refinement stage significantly improves SVM, while only marginally improving Point-
Net. Therefore, we show that our two-stage 3D segmentation method is simple, fast, and
effective. It is important to note that training a single PointNet on many P’s from many
episodes might yield better performance for such a deep model, but that requires many more
episodes of data collection. In contrast, our method operates on each episode separately and
generates high-quality pseudo-labels even in the low-data regime.

2.4 Actuation Noise

In Section 4.2 of the paper, we mentioned that our method show consistent improvement
over the baseline even under actuation noise modeled by a real robot. Here, we provide
the details. To simulate actuation noise as observed in a real-world robot, we apply the
noise model from Chaplot et al. [1]. This fits a separate Gaussian Mixture Model for each
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Method mAP@0.5 mAP@0.3 runtime (s)

SVM 67.57 87.44 1.18
SVM+CRF 86.88 92.93 1.46

PointNet 69.52 84.47 332.04
PointNet+CRF 71.85 85.22 332.32

Table 3: Performance and runtime comparison with PointNet. We perform comparison
between our two-stage segmentation method and PointNet, as well as ablate the effectiveness
of CRF as a refinement module.

action (move forward, turn right, turn left) based on noise measurements from LoCoBot1.
To register a cleaner scene pointcloud from the noisy measurements, we refine the camera
pose by optimizing a cycle consistency objective based on flow from depth.

Due to the variability in the egomotion estimates obtained from this setting, we apply
an additional constraint to remove pairs of frames where the optical flow obtained from the
egomotion estimate is not cycle-consistent. This is a well-known “check” for optical flow –
if flow does not align when computed in the forward t→ t +1 and the backward t +1→ t
direction, it is not likely to be correct. We use this strategy to identify exceptionally poor
egomotion estimates between frames to remove them. We first generate forward flow wt→t+1
and backward flow wt+1→t between each pair of views by warping the 3D point cloud from
the first view to the second view using the noisy egomotion estimate, and take the delta
between 2D points to be the flow. We estimate the rigid motion twice: once using the forward
flow, and once using the backward flow (which delivers an estimate of the inverse transform,
or backward egomotion). We then measure the inconsistency of these results, by applying
the forward and backward motion to the same pointcloud, and measuring the displacement:

XY Z
′
0 = RT bw

10 RT f w
01 (XY Z0) (1)

err = average
n

(‖XY Z
′
0−XY Z0‖), (2)

where RT f w
01 denotes the rotation and translation computed from forward flow, which carries

the pointcloud from timestep 0 to timestep 1, and RT bw
10 is the backward counterpart. If the

average displacement across the entire pointcloud is above a threshold (set to 0.1 meters),
then we treat the egomotion estimate for that image pair as “incorrect”, and remove that pair
of frames from the analysis. We keep a minimum of 10 views and a maximum of 25 views
(by taking 25 views with lowest error) from this process.

We show quantitative results of our method when the actuation noise is added. The
pseudo-label quality is evaluated on the Replica training set and the CARLA training set,
shown in Table 4 and Table 5, respectively. We observe that our method is still able to
produce significantly better pseudo-labels compared to the pre-trained detector’s predictions,
even under realistic noise settings. In addition, we show qualitative segmentation results in
the included video.

1http://locobot.org
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Method mAP@0.5 mAP@0.3

Pre-trained 21.36 26.14
SbM Labels w/ noise (ours) 23.15 33.68
SbM Labels w/o noise (ours) 26.20 38.12

Table 4: Pseudo-label accuracy with pose noise in the Replica training set. We show that
actuation noise weakens the data collection, yet our method is still able to produce pseudo-
labels that are better than the pre-trained detectors’ predictions.

Method mAP@0.5 mAP@0.3

Pre-trained 68.05 73.09
SbM Labels w/ noise (ours) 75.75 91.44
SbM Labels w/o noise (ours) 86.88 92.93

Table 5: Pseudo-label accuracy with pose noise on the CARLA training set. We show
that actuation noise weakens the data collection, yet our method is still able to produce
pseudo-labels that are better than the pre-trained detector’s predictions.

2.5 Effect of the Number of Views

In our experiments in the main paper, we set the number of views to N = 25 in all cases.
In this experiment, we ablate the effect of adding more views to the scene point cloud on
the performance of pseudo-labels. The quality of pseudo-labels is evaluated on the CARLA
training set. The results are shown in Table 6. We observe a steady increase in accuracy
initially, but it starts to saturate with an increased number of images. Since our method re-
quire at least 1 confident detection out of all views, scaling the number of views initially
increases the probability of finding a confident detection. After a certain number of views,
confident views are captured more often than not, resulting in a diminishing return in ac-
curacy of pseudo labels. However, we expect the performance of MaskRCNN fine-tuned
with our pseudo labels to increase monotonously with increasing views simply because of
increased training dataset size.

# views 2 5 10 15 20 25
mAP 64.9 75.9 84.4 85.5 87.2 86.9

Table 6: Effect of the number of views We report mAP@IoU=0.5 on the CARLA training
set, when we use 2, 5, 10, 15, 20, 25 views in each episode. When the number of views are
less than 25, we randomly sample without replacement.
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2.6 Multi-view Aggregation for Segmentation
Since in an episode we have multiple views of the objects, it is often likely that multiple
confident detections of the same object from different views exist. Therefore, another nat-
ural question that may arise in our setup is: does leveraging multi-view information help
segmentation?

In this experiment, we explore a variant of our method that aggregates confident detec-
tions from multiple views to obtain the 3D segmentation. However, correspondence does not
come for free: we don’t know how different detections from different views correspond to
one another. To sidestep this limitation and combine multiple detections of the same object
from different views, we use a voting mechanism. For the i-th object category, we keep a
voxel grid Vi with dimensions X ,Y,Z of size X×Y×Z by voxelizing pointclouds in the refer-
ence frame. The confident detections of all instances from the i-th category are unprojected,
transformed to the reference frame, voxelized, and added into Vi. To segment a particular
instance for class i, we initialize the sets Pbg the same way as before, but initialize Pf g from
the largest connected component in Vi that overlaps with the unprojection of that instance
detection. Then, the same two-stage segmentation method is used.

We compare the pseudo-label quality of the method in our main paper with this multi-
view aggregation variant on the CARLA training set, and report the results in Table 7. The
results suggest that pseudo-labels from multi-view detection aggregation significantly out-
perform the detections of the pre-trained detector, but underperforms our original method.
Furthermore, the performance drop for mAP@0.5 is larger than the drop for mAP@0.3. We
conjecture that this is due to two reasons: (1) to effectively cast votes from multi-view detec-
tions, we voxelize the points after they have been transformed to the reference frame, losing
detailed information about the point locations; (2) our two-stage segmentation method can
already perform robust segmentation of the full 3D object from a small subset of Pf g and Pbg
(from a single detection).

Method mAP@0.5 mAP@0.3

Pre-trained 68.05 73.09
SbM Labels w/ view agg. 80.29 89.26

SbM Labels original 86.88 92.93

Table 7: Pseudo-label accuracy with multi-view aggregation We show that multi-view
detection aggregation significantly improves over the baseline pre-trained detector, but un-
derperforms our original method.

3 Additional Visualizations

3.1 Qualitative Results for 3D Detection
As mentioned in the main paper, we show qualitative results of the 3D detections from
LDLS [7] and our SbM fine-tuned frustum PointNet in Figure 2. This demonstrates that
the 3D segmentation labels produced by SbM are high quality and could be successfully
used to train state of the art 3D detection models without ground truth 3D annotations.
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Figure 2: Visualizations of 3D object detection. We show paired examples of the results
of LDLS [7] (left) and SbM-trained frustum PointNet (ours, right) on the CARLA test set.
While LDLS estimates the bounding box roughly, the SbM-trained frustum PointNet is able
to obtain much tighter and better-oriented boxes.

3.2 Visually Unmatched Categories

As we described in Section 4.3 of the paper, categories that overlap between COCO and
Replica are sometimes visually (and even semantically) very different, making it hard to
obtain high confidence detections of certain objects. In Figure 3, we show that the tables
in COCO and Replica differ significantly in semantic meaning and appearance. In the left
image (from Replica), a detector pre-trained on COCO identifies a “dining table” with a
confidence score of 86%, while it is not labelled as a table in the Replica annotations. In
the right image, the bounding boxes show two tables and a couch annotated in Replica. We
observe that these annotated tables are visually very different from the “dining table" class
in COCO.

3.3 Pseudo-label Visualizations

We show visualizations of the 2D pseudo-label masks re-projected from the 3D segmentation
for a variety of classes in the Replica dataset in Figure 4. We can see that the segmentation
is complete with sharp borders between foreground and background. In addition, we show
qualitative segmentation results in the included video.

3.4 Weakly-supervised Novel Object Detection

In Figure 5, we show visualizations of the of 2D detector performance fine-tuned on SbM-ws
pseudo-labels. The pseudo-labels are generated with weak supervision (ground truth on 1
view per episode) on novel categories (corresponding to Section 4.5 of the main paper). The
detector detects the objects under diverse viewpoints.
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Figure 3: Semantically and visually different tables in COCO and Replica. We show a
table (predicted as “dining table" by the pre-trained MaskRCNN) on the left, and two actual
tables in Replica dataset on the right.

Figure 4: Example 2D pseudo-labels reprojected from 3D segmentation. We show ex-
amples of the reprojections of 3D segmentation (which are used as 2D pseudo-labels) on a
variety of objects in the Replica dataset.
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Cushion Nightstand

Shelf Beanbag

Figure 5: Visualizations of the detection results of the detector trained with SbM-ws
pseudo-labels From visualizations of detection results on the test set, we can see that the
detector supervised by SbM-ws pseudo-labels generates robust predictions.

4 Implementation Details

4.1 2D-to-3D unprojection
For the i-th view, a 2D pixel coordinate (u,v) with depth z is unprojected and transformed

to its coordinate (X ,Y,Z)T in the reference frame: (X ,Y,Z,1) = G−1
i

(
z u−cx

fx
,z v−cy

fy
,z,1

)T

where ( fx, fy) and (cx,cy) are the focal lengths and center of the camera model and Gi ∈
SE(3) is the camera pose for view i relative to the reference view.

4.2 2D Object Detection
For the pre-trained 2D detector, we use a Mask-RCNN [3] with FPN [4] using ResNet-50
as the backbone, pre-trained on the COCO dataset. We fine-tune it on the 2D pseudo-labels
from the training set for 100k iterations. To compare, we also fine-tune the detector on the
same images but with ground truth labels. In both settings, we use a learning rate of 0.001
and a batch size of 12. For selecting the best model, we compute its mAP on a validation
set at IoU threshold of 50% every 5000 iterations. We use the Mask-RCNN implementation
from Detectron2 [8], keeping all other hyperparameters as default.

4.3 3D Object Detection
We use the frustum PointNet model [6] with PointNet [5] backbone on CARLA. The original
frustum PointNet model uses ground truth 2D bounding boxes and camera pose to define a
3D frustum search space and then performs 3D segmentation on it using a PointNet-based
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architecture, and uses ground truth 3D boxes for supervision. In our experiment, we use
the 2D and 3D bounding boxes generated from our self-supervised 3D segmentation. To
compare, we also train the same network using ground truth 2D and 3D bounding boxes.
For both settings, we train it using a learning rate of 0.001 and a batch size of 32 until
convergence. For selecting the best model, we use the validation loss curve. We test both
models on a new unseen town and compare their performance.

4.4 Data Collection Details
For CARLA, we use a radius of 3.0-15.0 meters from the target object 3D centroid for
sampling goal locations for navigation. For Replica, we use a radius of 0.5-3.0 meters. We
estimate the 3D centroid of the target detection by unprojecting the median depth value of
the masked depth image. We obtain 25 views in each episode (sample 25 goal locations).
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