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A EPIC-KITCHENS-100: Results on the Test Set

In Table 3 of the main paper, we compare to published works on the validation set of EPIC-

KITCHENS-100. Unfortunately, most works do not report on the leaderboard test set. In

Table 1, we provide results on the test set comparing our model to baselines from [2], as well

as Ego-Exo [7] that distills knowledge from a much larger training set. MTCN outperforms

all other methods, including the competitive method of [7], showcasing that multimodal

temporal context from consecutive actions is more beneficial than pretraining large models

(ResNet101) using egocentric signals from third-person datasets.

B EPIC-KITCHENS-55 Results

We also compare our model to works that report on the earlier version of this dataset, namely

EPIC-KITCHENS-55 [1] in Table 2. We report results for the Seen split (S1). We opted to

include these in the appendix to avoid confusion in the main paper as the results are not

comparable across these two dataset versions. We compare MTCN with two audio-visual

approaches [16] and [18], as well as [17] which was one of the first works to utilise temporal

context. We also report the performance of [7] which evaluates their method on both EPIC-

KITCHENS-55 and EPIC-KITCHENS-100. Our MTCN outperforms all approaches.
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†Now at Google Research.
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

TSN [15] 59.03 46.78 33.57 87.55 72.10 53.89 53.11 42.02 27.37 26.23 14.73 11.43

TRN [19] 63.28 46.16 35.28 88.33 72.32 55.26 57.54 41.36 29.68 28.17 13.98 12.18

TBN [6] 62.72 47.59 35.48 88.77 73.08 56.34 56.69 43.65 29.27 30.97 19.52 14.10

TSM [9] 65.32 47.80 37.39 89.16 73.95 57.89 59.68 42.51 30.61 30.03 16.96 13.45

SlowFast [3] 63.79 48.55 36.81 88.84 74.49 56.39 57.66 42.55 29.27 29.65 17.11 13.45

Ego-Exo [7] 66.07 51.51 39.98 89.39 76.31 60.68 59.83 45.50 32.63 33.92 22.91 16.96

MTCN - v.f. SlowFast [3] 68.44 55.41 44.10 88.74 78.04 61.69 61.82 47.62 34.94 34.77 28.60 20.45

Table 1: Results on the test set of EPIC-Kitchens-100.

Top-1 Accuracy (%) Top-5 Accuracy (%)

Model Verb Noun Action Verb Noun Action

LFB [17] 60.0 45.0 32.7 88.4 71.8 55.3

G-Blend [16] 66.7 48.5 37.1 88.9 71.4 56.2

AV-SlowFast [18] 65.7 46.4 35.9 89.5 71.7 57.8

Ego-Exo [7] 65.97 47.99 37.09 90.32 70.72 56.32

MTCN (Ours) 69.12 51.30 40.77 90.18 73.53 59.15

Table 2: Comparison with SOTA on the Seen split (S1) of EPIC-KITCHENS-55.

C Language model analysis and baselines

In this section, we assess the statistical significance of our language model and compare

the performance of our MTCN to variants using baseline language models. All the exper-

iments in this section as well as in Sections D and E and the visualisations in Section H

are performed on the validation set of EPIC-KITCHENS-100 and using the SlowFast visual

features.

Statistical significance of LM. We train 10 audio-visual transformers and 10 corresponding

language models with different random seeds. Table 3 shows the mean and standard devia-

tion top-1 and top-5 accuracy without and with the language model. Utilising the language

model improves performance on average with a low std, demonstrating that the improvement

from the language model is statistically significant. We further showcase that by conducting

T-tests on verb, noun and action top-1 accuracies, obtaining a p-value of 3.6e−2, 6.0e−4,

9.7e−4, respectively.

Baselines comparison. We compare our MTCN that uses a transformer based language

model to two baselines, N-gram and Bi-directional LSTM (BiLSTM). For N-gram, we fol-

low a similar procedure to natural language processing. In particular, from all action se-

quences of length 9 in the training set, we derive the heuristic probability of occurrence of

the centre action given the preceding and succeeding actions. We train a BiLSTM with 3

layers and a hidden size of 512. The rest hyperparameters are the same as the transformer

encoder.

Results are shown in Table 4. It turns out that only a few preceding-succeeding ac-

tion sequences in the training set also appear in the validation set, resulting in no differ-

ence in performance when N-gram is added comparing to not using a language model. Our

transformer-based Masked Language Model (MLM) outperforms both the N-gram and BiL-

STM, showcasing that it is beneficial to use a deep neural network language model over a

heuristic prior and that MLM with transformers outperforms recurrent architectures in this

problem.
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Top-1 Accuracy (%) Top-5 Accuracy (%)

LM Verb Noun Action Verb Noun Action

✗ 70.26 ± 0.27 55.70 ± 0.22 44.90 ± 0.20 91.12 ± 0.13 79.03 ± 0.18 64.79 ± 0.17

✓ 70.52 ± 0.25 56.08 ± 0.21 45.25 ± 0.18 91.13 ± 0.13 79.03 ± 0.18 64.58 ± 0.18

Table 3: Mean and standard deviation of multiple runs both w. & w/o language model in the

validation set of EPIC-KITCHENS-100.

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

No LM 70.23 55.82 45.00 91.13 79.06 64.58 63.29 46.38 35.02 41.76 32.26 24.41

N-gram 70.23 55.84 45.02 91.13 79.06 64.49 63.29 46.38 35.02 41.76 32.26 24.41

BiLSTM 70.57 55.97 45.09 91.14 79.06 64.55 63.29 46.76 35.31 40.68 32.47 24.15

Transformer enc. (proposed) 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

Table 4: Performance of MTCN in the validation set of EPIC-KITCHENS-100 using differ-

ent language models.

D Online recognition

The focus of this work is to leverage both past and future context to predict an action. In

this section however, we explore the performance of our model in online recognition, i.e.

using only the preceding actions as context to predict the current action. This approach can

be used to recognise actions in an online fashion for streaming videos. For this setting, we

train the audio-visual transformer to predict the last action in the sequence. We do not train a

new language model for this task; we simply mask and predict the last action in the sequence

instead of the centre one.

Results are demonstrated in Table 5 by varying w. Our model can also utilise temporal

context in this setting, as performance improves for w > 1 with optimal top-1 accuracy at

w = 7 and optimal accuracy on tail-classes at w = 9. Compared to our original proposal that

utilises also future context (see Table 1 on main paper), the overall performance degrades,

indicating that leveraging future context is beneficial.

E Architecture ablations

In Table 6, we explore different number of layers in MTCN, both without and with (layer-

wise) weight sharing, and compare each case with a single layer. Note that we use the

same number of layers and sharing strategy for both AV and LM. We use bold to indicate

best performance within each group rather than overall. Best results are obtained using four

layers in most metrics, both without & with weight sharing. These outperform a single layer,

demonstrating that is beneficial to use a multi-layered transformer. Although MTCN without

weight sharing performs slightly better, our proposed model has 2.7× less parameters with

only a minor drop in performance.

In Table 7, we compare the effect of different types of positional encodings. Particularly,

we replace our chosen absolute learnt positional encoding with relative positional encod-

ings [12] and Fourier feature positional encodings [5]. Fourier feature positional encodings

replace our learnable absolute positional encodings with non-learnable ones represented as

a vector of log-linearly spaced frequency bands up to a maximum frequency. Relative po-

sitional encodings replace our absolute positional encodings of the inputs, with positional
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

w Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

1 67.93 52.29 41.30 90.53 76.47 61.52 61.13 44.60 32.58 42.05 27.42 21.48

3 68.42 54.15 42.59 91.20 78.52 61.10 61.69 44.41 32.11 40.11 31.26 22.58

5 68.58 54.04 42.75 90.96 78.27 62.04 59.81 43.94 32.11 39.49 31.11 22.48

7 68.88 54.31 42.96 90.89 77.87 62.39 61.41 43.38 32.02 40.51 32.00 23.61

9 68.77 54.28 42.77 90.66 77.72 62.44 60.38 45.07 31.83 40.80 32.68 23.86

11 67.83 54.04 42.13 90.63 78.85 62.10 57.46 43.94 31.46 36.88 30.74 21.96

Table 5: Online action recognition results by varying temporal context length in the valida-

tion set of EPIC-KITCHENS-100.

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Layers Shared Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

1 - 69.58 55.04 43.71 91.27 79.02 63.96 61.03 46.01 33.33 42.10 32.42 24.09

2 ✗ 69.49 55.41 43.94 91.13 78.96 63.86 62.72 46.57 34.37 41.42 32.32 23.90

4 ✗ 71.01 56.55 46.04 90.98 79.28 63.97 62.35 47.61 35.96 39.94 31.89 24.22

6 ✗ 69.58 55.68 44.89 90.28 78.17 63.37 61.31 45.63 34.46 38.75 32.21 23.90

2 ✓ 69.82 55.37 43.81 91.09 78.97 64.26 61.50 44.32 32.68 42.05 32.58 23.74

4 ✓ 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

6 ✓ 69.58 55.68 44.89 90.28 78.17 63.37 61.31 45.63 34.46 38.75 32.21 23.90

Table 6: Analysis of performance using different number of layers, both w. and w/o weight

sharing. Results are shown in the validation set of EPIC-KITCHENS-100.

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Pos. enc. Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Fourier PE 69.60 56.13 44.63 90.65 78.86 63.31 63.29 45.63 35.12 38.86 32.53 23.09

Relative PE 70.32 56.30 45.37 91.01 79.35 64.04 61.41 46.67 33.99 41.42 33.74 24.96

Absolute PE (Proposed) 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

Table 7: Comparison of different positional encodings (PE) using the validation set of EPIC-

KITCHENS-100.

encodings representing distances between tokens and placed within the self-attention lay-

ers. As shown in the table our proposed absolute learnable positional encodings outperform

Fourier feature positional encodings in all metrics (except top-5 action accuracy). Comparing

to relative positional encodings, our positional encodings are slightly better in top-1 verbs

and actions, as well as in unseen participants, while relative positional encodings perform

slightly better in top-5 accuracy and tail classes. Overall, there are no notable differences

between the different choices of positional encodings.

F EGTEA Implementation Details

Visual features. For EGTEA, we train SlowFast [3] using the EPIC-KITCHENS pre-trained

model, by sampling a clip of 2s from an action segment similar to EPIC-KITCHENS. We

use a learning rate of 0.001, no warm-up, and we keep the batch normalisation layers frozen.

All unspecified hyperparameters remain unchanged. For feature extraction, we follow the

same procedure as EPIC-KITCHENS, except that we use clips of 2s rather than 1s.
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Visual Visual + LM

w Top-1(%) Mean Class (%) Top-1(%) Mean Class (%)

1 72.26 64.98 72.26 64.98

3 72.55 64.86 73.59 65.87

5 73.10 65.42 73.49 65.57

7 72.26 64.38 73.19 65.31

9 72.55 64.86 73.44 66.02

Table 8: Ablation of temporal context extent and language model in the first test split of

EGTEA.

Train/Val Details. Here, we discuss differences in the architecture for training/evaluating

EGTEA. Remember that for EGTEA we train only vision and language as EGTEA does not

contain audio. First, as there is no audio input to the transformer, we do not use modality

encodings either. Second, following previous methods [4, 8, 10, 11, 13, 14] that train using a

single head for actions and report only action accuracy, we use a single summary embedding

for actions, rather than verb/noun embeddings. Accordingly, the language model utilises a

single word-embedding for actions, with a dimension of 512. For training the visual-only

transformer, we use a learning rate of 0.001, train the model for 50 epochs and decay the

learning rate at epochs 25 and 38, while keeping all other hyperparameters unchanged. We

use same hyperparameters for the language model. For evaluation, differently than EPIC-

KITCHENS, we average the predictions of the 10 clips per action, rather than feeding all 10

clips in the transformer.

G Ablation of temporal context and language model in

EGTEA

We study the effect of the temporal context length both with and without the language model

on the first test split of EGTEA. Results are shown in Table 8. For the visual only model,

top-1 accuracy increases when we increase the length of temporal context from w = 1 to 5,

and optimal results for both top-1 and mean class accuracy are obtained for w = 5. When the

language model is incorporated top-1 accuracy increases from w = 1 to 3 and then decreases

while best mean class accuracy is obtained at w = 9. These findings showcase that our

model successfully utilises context in this dataset as well. The language model is helpful

for EGTEA, and provides a bigger boost in performance than EPIC-KITCHENS, possibly

due to the absence of audio modality. Finally, it is worth noting that after the addition of

the language model best performance is obtained at a shorter temporal context, showing that

shorter sequences of actions provide a stronger prior in this dataset.

H Attention Visualisation

In Fig. 1, we show additional qualitative examples, similar to Fig. 4 in the main paper. These

demonstrate how our model attends to temporal context. In the first three examples, the

model predicts the centre action correctly, while in the last one it gives incorrect predictions.

In the ‘wash chopping board’ example, the model particularly attends to actions containing
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Pred : take chopping board
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Figure 1: Additional qualitative results of attention weights along with the predictions of

our model. Green and purple edges represent attention to visual and auditory tokens, respec-

tively, from the noun summary embedding. Thickness indicates attention weights magnitude

to centre (bordered) and temporal context actions.

the chopping board. For ‘open cupboard’, the model has high audio-visual attention to the

centre action, and high attention to the audio of the previous action (‘insert coffee maker’),

showing that at times audio provides useful temporal context. The importance of audio is

also apparent in the third example. A source of error in the model results from confusing the

centre action with another action in the sequence; in the fourth example ‘close dishwasher’

is predicted as ‘take chopping board’ which corresponds to the first and last actions in the

temporal context.
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