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1 Model Architecture and Implementation Details

1.1 Flow-based Hair Alignment
As described in Section 3.2 of our paper, the flow-based hair alignment module aligns the
target hairstyle with the source pose using a dense optical flow estimated by the hair flow
estimation network. We obtain the dense optical flow map F ∈ R2×H×W by combining a
coarse keypoint difference and the refinement flow map Fre f ∈ R2×H×W .

To be specific, our module first converts facial keypoints k ∈ RNk×2 into the Gaussian
keypoint heatmap H ∈ RNk×H×W , where Nk denotes the number of keypoints. Then, we
obtain the keypoint heatmap difference Ĥ∈RNk×H×W , which is calculated as Ht−Hs, where
t and s indicate a target and a source, respectively. With Ĥ and the warped It , the flow
estimation network, FE, predicts the Nk-channel mask M ∈ RNk×H×W and Fre f . Here, the
target image It is warped by the keypoint difference k̂∈RNk×2, which is calculated as kt−ks.
Accordingly, M and Fre f are obtained as follows:

M,Fre f = FE(Ĥ⊕W(It , k̂)). (1)

⊕ and W indicate concatenation and warping operation, respectively. W(I,α) means an
image I is warped by α . The warping operation is implemented using a bilinear sampler. FE
consists of two 1×1 convolutional (Conv) blocks, five down blocks, and five up blocks [9].

Finally, we obtain the dense optical flow map F as F = ∑
Nk
i=1 ρ(k̂i)⊗Mi +Fre f . Here,

ρ(·) repeats the input tensor by H ×W times and ⊗ denotes element-wise multiplication.
We adopt the Adam optimizer [7] with β1 = 0.5, β2 = 0.999 and the learning rate 0.0002.
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Also, we train the flow-based hair alignment for 240,000 iterations with batch size 8 in case
of K-hairstyle dataset and 110,000 iterations with batch size 16 for VoxCeleb.

1.2 Hair Synthesis

Figure 1: Detailed architecture of hair synthesis network.

The detailed architecture of the hair synthesis module is shown in Fig. 1. Our hair syn-
thesis module synthesizes the aligned target hairstyle with the source image. The network
needs to refine and apply the warped target hairstyle while preserving the source features
such as the faces, clothes, or backgrounds. Furthermore, the network is also required to in-
paint occluded regions in the source image with appropriate face, clothes, or backgrounds. To
achieve this, we utilize ALIgnment-Aware Segmen (ALIAS) [1] generator with Semantic-
region-aware Inpainting Mask (SIM) estimator.
ALIAS generator and discriminator. As described in Fig. 1 (a), the generator contains a
series of ALIAS residual blocks (ResBlk), along with up-sampling layers. We use the multi-
scale discriminator [1, 5].
ALIAS ResBlk. As presented in Fig. 1 (b), each ALIAS ResBlk consists of three sets of
ALIAS normalization layer (ALIAS Norm), ReLU, and Conv layer. First, a resized hair-
agnostic image Ii

HA ∈ R3×H i×W i
, an RGB-rendered facial keypoint image Ki

s ∈ R3×H i×W i
,

and the warped target hair image (Ih
t,w)

i are concatenated and fed to a Conv layer to obtain
f i. Then, f i is concatenated with hi, the feature from the previous layer, and injected to i-th
ALIAS ResBlk.
ALIAS Norm. ALIAS Norm normalizes hi⊕ f i separately based on the resized inpainting
mask Mi

inpaint ∈ R1×H i×W i
. Then, the normalized features are de-normalized with affine pa-

rameters γ and β , estimated based on the resized Mi
div. Mi

div consists of three components,
the warped target hair mask Mh,i

t,w, semantic-region-aware inpainting mask Mi
SI , and Mi

inpaint .
SIM estimator. The network separates Minpaint into face, clothes, background, and unknown
region. SIM estimator consists of two Down blocks, one Conv layer, and two Up blocks.
Each Down block has a Conv, Batch-Norm, and ReLU layer. Also, each Up block has an
up-sampling layer, Conv, Batch-Norm, and ReLU layer. SIM estimator is trained end-to-end
with ALIAS generator.
Lossses. The details of the losses we use are described below.
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LcGAN , LFM , and Lpercept . We adopt the conditional adversarial loss LcGAN , the feature
matching loss LFM , and the perceptual loss Lpercept , referring to VITON-HD, SPADE, and
pix2pixHD [1, 8, 11]. We use the hinge loss for LcGAN [13]. Let D be the discriminator
and Di be the activation of the i-th layer D. Similarly, VGGi be the activation of the i-th
layer VGG19 network [10]. NDi and NVGGi are the number of elements in Di and VGGi,
respectively. Each of the above loss functions is described below.

LcGAN = E[log(D(Mdiv,Is))]+E[1− log(D(Mdiv, Î))] (2)

LFM = E
T

∑
i=1

1
NDi
‖Di(Mdiv,Is)−Di(Mdiv, Î))‖1 (3)

Lpercept = E
V

∑
i=1

1
NVGGi

‖VGGi(Is)−VGGi(Î)‖1 (4)

Hairstyle loss Lstyle. To capture the fine details of hairstyle features, we utilize the Gram
matrix [4]. We compute the L2 distance between the gram matrices of the generated hair
features and the target hair features extracted by VGG16 [10]. The generated hair features
are obtained based on Mh

g⊗ Î and the target hair features are obtained based on Mh
t ⊗It. Gi is

the i-th Gram matrix, Gi(vi) = viᵀvi, where vi ∈RH iW i×NCi is the activation of the i-th layer of
VGG. Here, NCi and NGi represent the number of channels in VGGi and in Gi, respectively.
The activations from {relu1_2,relu2_2,relu3_3,relu4_3} of VGG are used for the loss.

Lstyle = E
V

∑
i=1

1
NGi
‖Gi(VGGi(Mh

t � It))−Gi(VGGi(Mh
g� Î))‖2 (5)

SIM estimator loss LSIM . GTSIM is a ground truth segmentation mask of the inpainting
mask Minpaint . GTSIM is obtained from the source semantic masks of a face, clothes, and
backgrounds extracted by the pre-trained face-parsing network [12]. We compute the binary
cross-entropy loss between GTSIM and the predicted MSI as below.

LSIM =−E[GTSIM log(MSI)+(1−GTSIM) log(1−MSI)] (6)

The total loss of the hair synthesis module is calculated as follows:

Ltotal = LcGAN +λFMLFM +λperceptLpercept +λstyleLstyle +λSIMLSIM, (7)

where we set both λFM and λpercept to 10, λstyle to 50, and λSIM to 100.
We adopt the Adam optimizer [7] with β1 = 0, β2 = 0.9. The learning rate of the generator

and the discriminator are set to 0.0001 and 0.0004, respectively. We train the hair synthesis
module for 15,000 iterations with batch size 8 for both K-hairstyle and VoxCeleb.

2 Additional Qualitative Results
We conduct an additional qualitative comparison between our model and the baseline mod-
els. Fig. 2 and Fig. 3 present qualitative results of K-hairstyle dataset and VoxCeleb dataset,
respectively. The results show that HairFIT successfully transfers hairstyles even when the
source and the target image have different poses. Furthermore, our model preserves delicate
target hairstyle features (e.g., curl, two-toned hair color, etc.) better than other models.
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Figure 2: Qualitative comparison with K-hairstyle dataset. Due to the privacy issue, we blur
the faces of the images.
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Figure 3: Qualitative comparison with VoxCeleb dataset.
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3 Limitations
Although HairFIT successfully transfers a hairstyle between images of different poses, our
model has several limitations.

First, HairFIT has difficulty in aligning a target hair which has a significant occlusion of
hair. Since our hair alignment module utilizes a warping operation to align the target hair,
the module can rearrange the pixels of the existing hair but cannot newly generate the unseen
hair. The first column of Fig. 4 presents an example where the right side of the target hair is
extremely occluded. In this case, our model cannot transfer the right hair of the target image
to the source image.

Next, a complicated texture or structure in occlusion regions degrades the quality of
generated images. For instance, as described in the second column of Fig. 4, even though a
person in a source image wears clothes with complex patterns, our model inpaints the region
only with simple and general texture.

Lastly, HairFIT is dependent on hair segmentation masks. For example, if the target hair
mask contains irrelevant regions such as the forehead, the output inevitably contains the
region. On the third column of Fig. 4, the forehead of the output reflects the target forehead
color which is different from the source since the target hair mask includes its forehead. Also,
the last column of Fig. 4 indicates an example where the target hair mask does not contain
thin hair on the forehead, leading to an inaccurate hairstyle transfer.

Figure 4: Limitations of HairFIT. The first column describes the case where a target hair
has an extreme occlusion and the second column is an example of complicated occlusion
regions in a source image. The last two columns are the cases of limitation due to inaccurate
hair segmentation masks.

4 Comparison with StarGAN v2
The previous work [6] shows that StarGAN v2 [2] has a capability to modify the hairstyle
of the source image based on the given target image. However, we found that StarGAN v2
fails to preserve other features (e.g., skin color, face shape, clothes, etc.) of the source image,
which are essential to maintain the source person’s identity. Since StarGAN v2 changes both
the hairstyle and the identity of the source image, it is not appropriate to compare StarGAN
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Dataset K-hairstyle VoxCeleb

StarGAN v2 (Gender) 0.5238 0.9938
StarGAN v2 (Hair) 0.5590 -

HairFIT (Ours) 0.9892 0.9993

Table 1: Quantitative comparison of identity preservation performance between StarGAN v2
and HairFIT. We measure the face verification accuracy using the pretrained ArcFace with
K-hairstyle and VoxCeleb dataset.

v2 with our model. For this reason, none of the existing hairstyle transfer work such as
MichiGAN, LOHO considered StarGAN v2 as their baseline, either.

To evaluate the identity preservation performance, we measure the face verification ac-
curacy of StarGAN v2 compared to HairFIT using the pre-trained ArcFace [3], which is one
of the state-of-the-art face recognition models. Since StarGAN v2 requires the domain labels
for training, we utilize the gender labels and the hairstyle labels provided from K-hairstyle
dataset and the gender labels from VoxCeleb dataset. As shown in Table 1, HairFIT suc-
cessfully preserves the source identity in both K-hairstyle and VoxCeleb. On the other hand,
StarGAN v2 trained with K-hairstyle fails to preserve the source identity. Although Star-
GAN v2 trained with VoxCeleb achieves the high verification accuracy, Fig. 5 demonstrates
that StarGAN v2 also modifies the features (e.g., skin color, makeup style, etc.) related to
the source identity. This reason makes StarGAN v2 hardly applicable for hairstyle transfer.

Figure 5: Qualitative comparison of identity preservation performance between StarGAN v2
and HairFIT.
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