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A Analytical α-value, α0

Define y(α) = z+α∆p,q to be the line intersecting z with direction ∆p,q. We wish to identify
the intersection between y(α) and the hyperplane that constitutes the decision boundary
between the two normal distributionsN (µp,1) andN (µq,1). Due to the identity covariance

matrices of the Gaussians, we can define w = µq− µp and b = −
(

µp+µq
2

)ᵀ
w to form the

decision boundary
wᵀx+b = 0. (4)

Equation (4) corresponds to the blue line in Figure 2.
To find the α-value which corresponds to the intersection, set x = z+α∆p,q and solve

for α in Equation (4):

wᵀ(z+α∆p,q)+b = 0 (5)
⇒ αwᵀ

∆p,q =−(wᵀz+b) (6)

⇒ α =−wᵀz+b
wᵀ∆p,q

. (7)

Choice of α1 value As described, we found α1 =α0+
4
5 (1−α0) to be an appropriate value

for generating convincing counterfactuals across the three datasets covered in this work.
That said, α1 = 1 would probably also have worked out fine. However, the goal was to stay
as close as possible to α0 to change as little as possible, while still generating convincing
counterfactuals.

To give the reader an idea of the effect, we plot counterfactuals for five different inputs
for varying values of t in Figure 7. In the plot, α1 is determined as a function of t and α0:

α1 = α0 + t(1−α0). (8)
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Figure 7: Effect of varying t, when generating counterfactuals using ECINN.
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B Tipping-point Counterfactuals
Here, we prove that ECINN produces tipping-point values according to Definition 1. Recall
that we wish to find a constant C ∈]0;1[ and h : [0;1]→X such that p(y|h(c)) > p(q|h(c))
whenever c < C, similarly p(y|h(c)) < p(q|h(c)) whenever c > C, and finally p(y|h(c)) =
p(q|h(c)) when c =C. In the following, we choose C and h in such a way that they comply
with Definition 1.

Proof. Let C = 1
2 and define c̄ as

c̄ =

{
2α0 if c≤ 1

2
α0 +2c−1 otherwise

. (9)

This way, c̄ < α0 when c <C and c̄ > α0 when c >C.
Now define h(c) = f−1(z+ c̄∆y,q), where f is the INN, z = f (x), and ∆y,q is as defined in

Section 3.3. Assume further that G(x) = y and G( f−1(x+∆y,q)) = q, i.e., the input sample
is correctly classified and the counterfactual is classified as class q.

Sketch of proof: we use the property of Equation (2) to show that ‖µy− z+ c∆y,q‖ <
‖µq− z+ c∆y,q‖ when c <C and vice versa.

By the change-of-variable formula (Equation (1)), Bayes’ theorem, and the assumption
p(y) = 1

K , we have the relation

p(y|x) = p( f (x)|y)p(y)
∑y′ p( f (x)|y′)p(y′)

(10)

=
p( f (x)|y)

∑y′ p( f (x)|y′)
(11)

⇒ log p(y|x) = log pz|y( f (x))+ log |det(J)|− log

[
∑
y′

pz|y( f (x)|y′)

]
− log |det(J)| (12)

= log pz|y( f (x))− log

[
∑
y′

pz|y( f (x)|y′)

]
(13)

and an identical relation holds for p(q|x)

log p(q|x) = log pz|q( f (x))− log

[
∑
y′

pz|q( f (x))

]
(14)

For a fixed x, we see that for log p(y|x) to be greater than log p(q|x), only the first term
matters. As pz|y =N (µy,1), we have that

log pz|y(z) =−
d
2

log2π− 1
2
‖µy− z‖2

∝ ‖µy− z‖2, (15)

and similarly for pz|q. As such, by injecting h(c) into log pz|y it suffices to prove that ‖µy−
z+ c̄∆y,q‖ = ‖µq− z+ c̄∆y,q‖ when c = C, ‖µy− z+ c̄∆y,q‖ < ‖µq− z+ c̄∆y,q‖ when c < C
and vice versa.

First, note that when c = C, then c̄ = α0 so z+ c̄∆y,q = z+α0∆y,q and thus ‖µy− z+
c̄∆y,q‖= ‖µq− z+ c̄∆y,q‖ holds by construction of α0.
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Second, from the assumption that G(x) = y, we know that ‖µy− z+0∆y,q‖< ‖µq− z+
0∆y,q‖. Similarly, from the assumption that G( f−1(x+∆y,q)) = q, we know that ‖µy− z+
∆y,q‖> ‖µq− z+∆y,q‖. It follows, that when c <C, ‖µy− z+ c̄∆y,q‖< ‖µq− z+ c̄∆y,q‖ and
vice versa.

C Experimental Details
In Table 2, we provide an overview of hyperparameters and performances of the networks
used in this work.

IB-INN. We have trained IB-INN models “as-is”5 and adjusted only the β -value of the
loss function. On FakeMNIST and MNIST, the IB-INN models were trained for 60 epochs
with stochastic gradient descent and a milestone scheduler stepping from learning rate 0.07
to 0.007 after 50 epochs. On CelebA-HQ, the IB-INN models were trained for 800 epochs
with the Adam optimizer [18] and a milestone scheduler stepping with a factor 1

10 after every
200 epochs.

D IB-INN Model and Loss
The model architecture and loss function used in this work were proposed by [2]. The
loss was derived from an information bottleneck formulation with a hyperparameter, β , that
allows trading off generative and classification capabilities. The loss function is based on
mutual information I:

LIB = I(X ,Z)−β I(Z,Y ). (16)

Mutual information quantifies the amount of information which is shared between variables.6

As such, by minimizing LIB, the mutual information between the input and the latent vec-
tor is minimized while the mutual information between the latent vector and class label is
maximized. In practice, the first term, I(X ,Z), can be thought of as a generative loss, which
results in a good performance on generating images. The second term, I(Z,Y ), is closely

5IB-INN code: https://github.com/VLL-HD/IB-INN
6For an invertible mapping f and Z = f (X), LIB is, in fact, ill-defined, and the authors [2] add noise to X to

overcome the issue.

Dataset β BPD Err.

FakeMNIST 1.4265 1.77 0%
MNIST 1.4265 1.89 0.85%

CelebA-HQ
Smile 1 3.32 7.42%
High cheekbones 1 3.09 14.38%
Lipstick 1 3.06 4.87%
Heavy makeup 1 3.08 12.68%

Table 2: Hyperparameters, negative log-likelihood measured in bits per dimension (BPD),
and error rates for the models used in this work.
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related to the categorical cross-entropy loss, thus promoting high accuracy. Throughout our
experiments, we use models trained with the IB-INN loss, LIB.

For simplicity, we do not include experiments across multiple values of β in the main
paper. Overall, we find that values close to one strike a good balance between counterfactual
examples and model accuracy in our experiments. We do, however, include Figure 8 which
demonstrates the conflicting effect of β on the quality of counterfactuals and the accuracy of
the model.
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Inputs = 0.02, Acc: 95.03% = 0.03, Acc: 95.96% = 0.05, Acc: 97.64%

= 0.08, Acc: 97.86% = 0.13, Acc: 98.70% = 0.21, Acc: 98.80% = 0.34, Acc: 99.02%

= 0.55, Acc: 99.07% = 0.89, Acc: 99.34% = 1.43, Acc: 99.15% = 2.29, Acc: 99.42%

= 3.68, Acc: 99.40% = 5.91, Acc: 99.38% = 9.49, Acc: 99.41% = 15.24, Acc: 99.47%

= 24.47, Acc: 99.51% = 39.29, Acc: 99.50% = 63.10, Acc: 99.28%

Figure 8: Counterfactual examples for MNIST models trained with different values of β .
The top left square represents the input images that are all changed with target q = 3. Above
plots are β -values in ascending order and corresponding test set accuracies.
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(b) Label: Wearing libstick.
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(c) Label: Heavy makeup.
Figure 9: CelebA-HQ counterfactual examples. First five columns are inputs with negative
labels and counterfactuals with positive labels and vice versa for the last five columns.

E Additional Samples
In Figure 9, we include counterfactual examples similar to Figure 6 for three additional
labels. We also include pdfs with extra samples of all figures from our experiments. For each
figure, there is a corresponding pdf in the related work zip-file. For example, Figure 9a has
a corresponding pdf in the supplementary material named figure9a.pdf with additional
samples.
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F Hardware Specifications
All experiments were run on a single machine learning server with 128GB system memory,
an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz processor, and 5 NVIDIA RTX 2080 Ti.
See all details below.

$ nvidia-smi -L
GPU 0: GeForce RTX 2080 Ti (UUID: ...)
GPU 1: GeForce RTX 2080 Ti (UUID: ...)
GPU 2: GeForce RTX 2080 Ti (UUID: ...)
GPU 3: GeForce RTX 2080 Ti (UUID: ...)
GPU 4: GeForce RTX 2080 Ti (UUID: ...)

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz
Stepping: 7
CPU MHz: 1000.777
CPU max MHz: 2201.0000
CPU min MHz: 1000.0000
BogoMIPS: 4400.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 16896K
NUMA node0 CPU(s): 0-11,24-35
NUMA node1 CPU(s): 12-23,36-47

$ lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x000000007fffffff 2G online no 0
0x0000000100000000-0x000000027fffffff 6G online yes 2-4
0x0000000280000000-0x00000006ffffffff 18G online no 5-13
0x0000000700000000-0x00000007ffffffff 4G online yes 14-15
0x0000000800000000-0x0000000f7fffffff 30G online no 16-30
0x0000000f80000000-0x0000000fffffffff 2G online yes 31
0x0000001000000000-0x000000207fffffff 66G online no 32-64

Memory block size: 2G
Total online memory: 128G
Total offline memory: 0B


