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A Analytical o-value, o

Define y(ot) = z+ aA, 4 to be the line intersecting z with direction A, ,. We wish to identify
the intersection between y(ot) and the hyperplane that constitutes the decision boundary
between the two normal distributions N (1,,, 1) and N (14, 1). Due to the identity covariance

. . g \ T
matrices of the Gaussians, we can define w = i, — 1, and b = — (#) w to form the

decision boundary
wTix+b=0. “4)

Equation (4) corresponds to the blue line in Figure 2.
To find the o-value which corresponds to the intersection, set x = z+ @A, ; and solve
for o in Equation (4):

WT(z+ 0hpg) +b=0 )

= awTA, g =—(WTz+Db) (6)
Tz+b

= a=_YEE2 %)
wTAp 4

Choice of ¢t value As described, we found o) = o+ %(1 — ap) to be an appropriate value
for generating convincing counterfactuals across the three datasets covered in this work.
That said, op = 1 would probably also have worked out fine. However, the goal was to stay
as close as possible to ¢ to change as little as possible, while still generating convincing
counterfactuals.

To give the reader an idea of the effect, we plot counterfactuals for five different inputs
for varying values of 7 in Figure 7. In the plot, ¢ is determined as a function of 7 and oy:

oy = o +1(1—op). ®)
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Figure 7: Effect of varying ¢, when generating counterfactuals using ECINN.
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B Tipping-point Counterfactuals

Here, we prove that ECINN produces tipping-point values according to Definition 1. Recall
that we wish to find a constant C €]0; 1 and & : [0; 1] — X such that p(y|h(c)) > p(gq|h(c))
whenever ¢ < C, similarly p(y|h(c)) < p(g|h(c)) whenever ¢ > C, and finally p(y|i(c)) =
p(g|h(c)) when ¢ = C. In the following, we choose C and % in such a way that they comply
with Definition 1.

Proof. LetC = % and define ¢ as

: 1
0p+2c—1 otherwise

This way, ¢ < ap when ¢ < C and ¢ > o when ¢ > C.

Now define h(c) = f~!(z+¢Ay4), where f is the INN, z = f(x), and Ay, is as defined in
Section 3.3. Assume further that G(x) =y and G(f~!(x+A,,)) = q. i.e., the input sample
is correctly classified and the counterfactual is classified as class g.

Sketch of proof: we use the property of Equation (2) to show that ||i, —z+ cA 4[| <
|ty —z+ cAy4|| when ¢ < C and vice versa.

By the change-of-variable formula (Equation (1)), Bayes’ theorem, and the assumption
ply) = %, we have the relation

— p(f@)y)p(y)
POk = 5 ) (10
P o

T r(f@Y)

= log p(y|x) = log p,,(f(x)) +log|det(J)| —log [Zpu x)]y' )] —log|det(J)| (12)

= 10gpz|y(f( ) —log [szy )|y )1 (13)

and an identical relation holds for p(g|x)

log p(g|x) = 1og p,,(f(x)) —log lszm(f (X))] (14)
yl

For a fixed x, we see that for log p(y|x) to be greater than log p(g|x), only the first term
matters. As p_j, = N(iy,1), we have that

d 1
logp(2) = — 5 log2m — |y — 2/ < |1, — 2P, (s)

and similarly for p_,. As such, by injecting /(c) into log p,, it suffices to prove that ||u, —
24+ Ay 4|l = ||Hg — 2+ CAy 4|l Wwhen ¢ = C, ||y — 2+ CAy 4|l < ||lg — 2+ CAy4|| When ¢ < C
and vice versa.

First, note that when ¢ = C, then ¢ = ap so z+¢A,, = z+ oA, , and thus [|u, —z+
eAy 4l = || tg — 2+ €Ay 4| holds by construction of 0.
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Second, from the assumption that G(x) =y, we know that ||, —z+0A || < ||ty —z+
0Ay,||. Similarly, from the assumption that G(f~!(x+A,,)) = g, we know that ||, —z+
Aygll > ||y — 24 Ay gl Tt follows, that when ¢ < C, ||y — 24 CA4|| < ||Hg — 2+ €Ay 4| and
vice versa. O

C Experimental Details

In Table 2, we provide an overview of hyperparameters and performances of the networks
used in this work.

IB-INN. We have trained IB-INN models “as-is” and adjusted only the B-value of the
loss function. On FakeMNIST and MNIST, the IB-INN models were trained for 60 epochs
with stochastic gradient descent and a milestone scheduler stepping from learning rate 0.07
to 0.007 after 50 epochs. On CelebA-HQ, the IB-INN models were trained for 800 epochs
with the Adam optimizer [18] and a milestone scheduler stepping with a factor % after every
200 epochs.

D 1IB-INN Model and Loss

The model architecture and loss function used in this work were proposed by [2]. The
loss was derived from an information bottleneck formulation with a hyperparameter, 3, that
allows trading off generative and classification capabilities. The loss function is based on
mutual information /:

Lig=I1X,Z2)-BI(Z,Y). (16)

Mutual information quantifies the amount of information which is shared between variables.®
As such, by minimizing L;p, the mutual information between the input and the latent vec-
tor is minimized while the mutual information between the latent vector and class label is
maximized. In practice, the first term, /(X,Z), can be thought of as a generative loss, which
results in a good performance on generating images. The second term, /(Z,Y), is closely

SIB-INN code: https://github.com/VLL-HD/IB-INN
OFor an invertible mapping f and Z = f(X), L;p is, in fact, ill-defined, and the authors [2] add noise to X to
overcome the issue.

Dataset B BPD Err.
FakeMNIST 1.4265 1.77 0%
MNIST 1.4265 1.89 0.85%
CelebA-HQ
Smile 1 332 742%
High cheekbones 1 3.09 14.38%
Lipstick 1 3.06 4.87%
Heavy makeup 1 3.08 12.68%

Table 2: Hyperparameters, negative log-likelihood measured in bits per dimension (BPD),
and error rates for the models used in this work.
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related to the categorical cross-entropy loss, thus promoting high accuracy. Throughout our
experiments, we use models trained with the IB-INN loss, £;5.

For simplicity, we do not include experiments across multiple values of 8 in the main
paper. Overall, we find that values close to one strike a good balance between counterfactual
examples and model accuracy in our experiments. We do, however, include Figure 8 which
demonstrates the conflicting effect of B on the quality of counterfactuals and the accuracy of
the model.
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Flgure 8 Counterfactual examples for MNIST models tramed with different values of 3.
The top left square represents the input images that are all changed with target g = 3. Above
plots are f-values in ascending order and corresponding test set accuracies.
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(c) Label: Heavy makeup.
Figure 9: CelebA-HQ counterfactual examples. First five columns are inputs with negative
labels and counterfactuals with positive labels and vice versa for the last five columns.

E Additional Samples

In Figure 9, we include counterfactual examples similar to Figure 6 for three additional
labels. We also include pdfs with extra samples of all figures from our experiments. For each
figure, there is a corresponding pdf in the related work zip-file. For example, Figure 9a has
a corresponding pdf in the supplementary material named figure9a.pdf with additional
samples.
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F Hardware Specifications

All experiments were run on a single machine learning server with 128GB system memory,
an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz processor, and 5 NVIDIA RTX 2080 Ti.
See all details below.

$ nvidia-smi -L

GPU 0: GeForce RTX 2080 Ti (UUID L)

GPU 1: GeForce RTX 2080 Ti (UUID L)

GPU 2: GeForce RTX 2080 Ti (UUID: ..)

GPU 3: GeForce RTX 2080 Ti (UUID L)

GPU 4: GeForce RTX 2080 Ti (UUID )

$ lscpu

Architecture: x86_64

CPU op-mode (s) : 32-bit, 64-bit

Byte Order: Little Endian

CPU (s) : 48

On-line CPU(s) list: 0-47

Thread(s) per core: 2

Core (s) per socket: 12

Socket (s) : 2

NUMA node (s) : 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 85

Model name: Intel (R) Xeon(R) Silver 4214 CPU @ 2.20GHz
Stepping: 7

CPU MHz: 1000.777

CPU max MHz: 2201.0000

CPU min MHz: 1000.0000

BogoMIPS: 4400.00

Virtualization: VT-x

Lld cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 16896K

NUMA nodeO CPU(s) : 0-11,24-35

NUMA nodel CPU(s) : 12-23,36-47

$ lsmem

RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x000000007£££££E£E 2G online no 0
0x0000000100000000-0x000000027fffffff 6G online yes 2-4
0x0000000280000000-0x00000006£££££f£f£ff 18G online no 5-13
0x0000000700000000-0x00000007f£fffffff 4G online yes 14-15
0x0000000800000000-0x0000000£7££££££f 30G online no 16-30
0x0000000£80000000-0x0000000ff£££££EE 2G online yes 31
0x0000001000000000-0x000000207£f£f££f£f£ff 66G online no 32-64
Memory block size: 2G

Total online memory: 128G

Total offline memory: 0B



