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1 Overview
In this supplementary material, we first provide qualitative analysis of each component in
MEDUSA (Section 2). Second, we describe the training setup used in our experiments for
reproducibility (Section 3). Finally, we review the standard form of the transformer architec-
ture including its multi-head attention and multi-layer structure (Section 4).

2 Qualitative Analysis of MEDUSA
The pipeline of MEDUSA consists of three components designed for (i) feature extraction
from RGB and depth inputs, (ii) feature refinement of RGB and depth features, and (iii)
feature fusion between them through the multimodal transformers. This section provides a
qualitative analysis of each component to understand the detailed benefits of MEDUSA.

2.1 Global Saliency of Depth Features (Figure 1)
The contribution of the feature refiner stage in MEDUSA is to attenuate noise in the inferred
features by the region- and channel-wise attentions. The improvement of the global saliency
map 1 of depth features by the refiner is displayed in Figure 1. In general, the initial saliency
map in Figure 1(c) does not clearly focus on the salient objects in the scene. However, the
initial feature map is polished with a guide of the clean RGB input by the feature refiner
and then becomes a more reliable one, leading to a more clear global saliency map in Figure
1(d). For example, in the first row of Figure 1(d), the front heads of the three zebras become
more clearly identifiable.

2.2 Attention Weights for Transformers (Figures 2 and 3)
Encoder Attention.: We visualize the attention map of each modality derived by the self-
attention block in the encoder. As illustrated in Figure 2, the encoder of MEDUSA ex-
plores all pairwise pixel interactions for each modality by maintaining the modality-wise
self-attention module. Given a reference point (i.e., colored dots in Figure 2), the attention
weights are emphasized if their positions are closely related to the reference point.

As already confirmed by Carion et al. [1], the self-attention in the encoder tends to
separate objects, which helps simplify object extraction and localization for the decoder.
This process is performed independently for each modality using two self-attention streams

1The global saliency map was computed by adding all the values in the feature map along the channel line.
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(a) RGB Image. (b) Estimated Depth Map. (c) Depth Saliency. (d) Refined Depth Saliency.

Figure 1: Visualization of the global saliency map of depth features: (a) the source image;
(b) the estimated depth map by MiDaS; and (c)–(d) the global saliency map of depth features
before and after applying the feature refiner, respectively.

in the encoder of MEDUSA. By doing so, prior to RGB-D fusion in the decoder, MEDUSA
captures the areas where RGB and depth features are respectively more effective to localize
the object near the reference point.

Decoder Attention. MEDUSA performs attention-based RGB-D fusion using the trans-
former. The multimodal attention block in the decoder derives the attention weights for the
stack sequence of RGB and depth representations, determining which representation should
be highlighted to maximize their complementary information. Figure 3 shows the attention
weights of each modality for RGB-D fusion along with its query identifiers and predicted
labels. Unlike the previous work [6, 8, 12] that simply concatenates or adds the entire RGB
and depth feature maps, MEDUSA determines a different fusion strategy object-wisely.

The RGB and depth information are complementary to each other for object detection.
For the objects framed by cyan and yellow boxes in Figure 3(b), the RGB information is
much dominant in classifying the bench and the person because depth values are very similar
for the two objects. In contrast, the depth information serves as a decisive clue for the objects
framed by cyan and green boxes in Figures 3(c) and 3(d).

3 Detailed Experimental Setup
3.1 Datasets
Three benchmark datasets are used for evaluation: VOC, COCO, and SUN-RGBD – an
instance of data contains 2.35, 6.53, and 5.66 objects on average, respectively. We apply the
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state-of-the-art monocular depth estimator, MiDaS [7], for VOC and COCO because ground-
truth depth maps are not available in both datasets.

• VOC [2]: Two trainval sets of 17K images in VOC2007 and VOC2012 were combined
for training data, and the 5K test set in VOC2007 was used for test data. Each instance
contains 2.35 objects on average.

• COCO [4]: We used the widely-used trainval set (80K train set+35K subset of validation
set) in COCO2017 for training data, while the remaining 5K subset of the validation set
was used for test data. COCO is more challenging than VOC since each instance contains
6.53 objects on average.

• SUN-RGBD [9]: We used standard splits: 50K training and 50K testing images with
ground-truth depth maps captured by several devices. 19 major categories were used for
detection following the literature [3, 9]. Each instance contains 5.66 objects on average.

3.2 Training Configuration
We describe the training hyperparameters used in our experiments. All the compared meth-
ods were trained using AdamW [5] for 150 epochs regardless of datasets. Except for the
backbone, all the architectures were trained with an initial learning rate of 10−4 decayed by
10 at the 100-th epoch. We also applied a weight decay of 10−4, a dropout of 0.1, and a
gradient clipping with a maximal norm 0.1. For reproducibility, the random seed was always
set to be 42, and the detailed hyperparameter setup is as follows:

Backbone. The ResNet-50 pretrained on ImageNet was used as the feature extractor, dis-
carding the last classification layer. However, since the model was not fully compatible with
the three extensions of DETR, the first convolutional layer in ResNet-50 was replaced to sup-
port the four-channel RGB-D input or one-channel depth input for the early and late fusion
approaches, respectively. In addition, all the batch normalization weights and statistics of the
backbone were frozen during training following the common practice in object detection [1].

Transformers. DETR introduces multiple hyperparameters for the transformer. We used
the transformer with six encoder and decoder layers of width d = 256 for all methods. For
each encoder (or decoder) layer, the multi-head attention mechanism with eight heads was
applied, followed by the point-wise FFN of 2048 hidden units. Furthermore, an additive
dropout of 0.1 was applied before the layer normalization. All the transformer architectures
were trained from scratch using the wights initialized with Xavier initialization.

Feature Refiner. An additional component in MEDUSA is the feature refiner. For the
region-wise attention, the number of binary mask maps b was set to be 50. Regarding the
channel-wise attention, we used the standard form introduced in CBAM [11]; the average
pooling was used to obtain the aggregated descriptor of each channel, and then the size of
each descriptor was reduced with a reducti on ratio of 16 to alleviate parameter overhead.

Detection Head. The output of the decoder is fed to a 3-layer FFN for bounding box regres-
sion and linear projection for classification,

B̂ = FFN3-layer(O
ob j) and P̂ = Linear(Oob j). (1)

For box regression, the FFN produces the bounding box coordinates, B̂ ∈ [0,1]n×4, that en-
codes the normalized box center coordinates along with its width and height. For classifica-
tion, the linear projection uses a softmax function to produce the classification probabilities
for all possible classes including the background class.
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4 Preliminaries: Transformers
A transformer is a deep model that entirely relies on the self-attention mechanism for ma-
chine translation [10]. In this section, we briefly revisit the standard form of the transformer.
For consistency with the manuscript, we assume that the input Z is a d-dimensional embed-
ding sequence of length hw.
Single-Head Attention. The basic building block of the transformer is a self-attention mod-
ule, which generates a weighted sum of the values, where the weight assigned to each value
is the attention score computed by the scaled dot-product between its query and key. Let WQ,
WK , and WV be the learned projection matrices of the attention module, and then the output
is generated by

Attention(Z) = softmax
( (ZWQ)(ZWK)

>
√

d

)
(ZWV ) ∈ Rhw×d ,

where WQ,WK ,WV ∈ Rd×d .

(2)

Multi-Head Attention. It is beneficial to maintain multiple heads such that they repeat the
linear projection process k times with different learned projection matrices. Let WQi , WKi ,
and WVi be the learned projection matrices of the i-th attention head. Then, the output is
generated by the concatenation of the results from all heads,

Multi-Head(Z) = [Attention1(Z),Attention2(Z), . . . ,Attentionk(Z)] ∈ Rhw×d ,

where ∀i WQi ,WKi ,WVi ∈ Rd×(d/k).
(3)

Typically, the dimension of each head is divided by the total number of heads due to the
computational overhead.
Feed-Forward Network (FFN). The output of the multi-head attention is fed to the point-
wise FFN, which performs the linear transformation for each position separately and iden-
tically to allow the model focusing on the contents of different representation subspaces.
Here, the residual connection and layer normalization are applied before and after the FFN.
Hence, the final output H is generated by

H = LayerNorm(Dropout(H ′)+H ′′),

where H ′ = FFN(H ′′) and H ′′ = LayerNorm(Dropout(Multi-Head(Z))+Z).
(4)

Encoder and Decoder. The encoder only has two sub-layers: a multi-head self-attention
module and a point-wise FFN. That is, the output of the encoder is produced as described in
Eq. (4). On the other hand, the decoder includes another third layer in addition to the two
sub-layers in the encoder. The third layer receives the output of the encoder (i.e., memory)
as the key and value, and the output of its multi-head self-attention module as the query.
Similar to the encoder, the decoder employs the residual connection and layer normalization
around each of the sub-layers.
Multi-Layer Transformers. For both an encoder and a decoder, the output of a previous
layer is fed directly to the input of the next layer. Regarding the positional encoding, the
same value is added to the input of each attention module for all layers. Please note that
MEDUSA adds the sinusoidal-based spatial positional encoding to supplement the flattened
input sequence following the recent work [1, 13].
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Figure 2: Visualization of encoder attention weights for self-attention. All the attention
weights are derived from the “self-attention block” in the encoder. As the reference point for
encoder attention maps, we provide a set of suitable positions inside the predicted bounding
boxes. Using the average value of multiple heads in the final encoder layer, the attention
weights are coded with different colors for each reference point.
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Query Id: 96 (Zebra) Query Id: 82 (Zebra) Query Id:99 (Zebra)RGB and Depth

Query Id: 65 (Bench) Query Id: 82 (Person) Query Id: 9 (Bench)RGB and Depth

RGB and Depth

RGB and Depth

Query Id: 67 (Person) Query Id: 9 (Person) Query Id: 10 (Person) Query Id: 23 (Person)

Query Id: 40 (Person) Query Id: 49 (Elephant) Query Id: 82 (Elephant) Query Id: 99 (Person)

(a)

(b)

(c)

(d)

Figure 3: Visualization of decoder attention weights for RGB-D fusion. All the attention
weights are derived from the “multimodal attention block” in the decoder. All predicted
objects with their softmax probability > 0.8 are plotted at their respective location from left
to right. The first and second rows of each example in (a)–(d) are the attention weights
for RGB and depth representations. Using the average value of multiple heads in the final
decoder layer, the attention weights are coded with different colors for each object.
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