1 Dataset Details

We create a synthetic dataset called ArtImage to evaluate OMADNet. We choose five cat-
egories(laptop, eyeglasses, dishwasher, drawer, scissors) from PartNet-Mobility[9] which is
a public dataset that contains CAD models of articulated objects. We re-align the rest pose
and direction of the objects in these categories(See Fig. 1). After that, we use Unity[1] to
render depth images with random object location, joint state and camera viewpoint for each
category. We only adopt viewpoints that are above the object horizontal plane, for articulated
objects are usually viewed from above in daily life. This limitation also resolves symmetric
problem on categories like scissors and makes different parts distinguishable.

On average, each category has about 50 instances and 200 depth images are generated
for each instance. We choose 10% instances as unseen test objects for each category, while
the other instances are used for training. On average, we have 10000 training images and
1000 testing images that contains unseen instances for each category. Because all the depth
images are synthetic, we can easily get ground-truth annotations such as part segmentation
masks, joint states and object poses.

n

e

Figure 1: The examples of re-annotation for articulated object models in PartNet-
Mobility[9]. We manually align the rest state for each category.

2 Implementation Details

The dimension of shape parameters 8 is 10, which means the shape function of each cateogry
has 10 linear shape basis. Joint function J(B) consists of two-layer MLP with ReLu activa-
tion, the hidden dimension of MLP is 64. The total number of keypoints for each category is
set to 24 by default(we set it to 32 for drawers, because this category has more part numbers).

2.1 OMAD-PriorNet

The input of OMAD-PriorNet is complete point cloud X’ of articulated objects in canon-
ical space, and the output are instance-specific parameters including shape parameters f3,
keypoints P’ and joint parameters @’ in canonical space. For OMAD-PriorNet, we perform
surface point sampling on complete object mesh to generate point cloud which has 2048

Citation
Citation
{Xiang, Qin, Mo, Xia, Zhu, Liu, Liu, Jiang, Yuan, Wang, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{uni}

Citation
Citation
{Xiang, Qin, Mo, Xia, Zhu, Liu, Liu, Jiang, Yuan, Wang, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

points per object. The point cloud will be placed in to OMAD space and serve as the input
of OMAD-PriorNet. During training, we will perform random scale augmentation. Specif-
ically, we multiply a random scale factor s € [0.5,1.5] on x,y,z direction of the input point
cloud in OMAD space separately. We use SGD optimizer with a initial learning rate 0.001
with momentum 0.9. We also adopt cosine learning rate decay[6] during training.

2.2 OMADNet

For OMADNet, the channel number of dense feature is 128. We random sample 1024 points
from point cloud as input of OMADNet. We use SGD optimizer with a initial learning
rate 0.001 with momentum 0.9. We train OMADNet for 100 epochs on Artlmage training
dataset. We also adopt cosine learning rate decay[6] during training. For optimization pro-
cess, we use Adam[4] optimizer with learning rate 0.01. Generally, the optimization takes
about 200 iterations to coverage.

2.3 A-NCSH]|5]

For the re-training of A-NCSHJ[5], we modify their official code to adapt to our dataset. We
randomly sample 1024 points from point cloud as input. The PointNet++[8] backbone of A-
NCSH network is the same as ours in OMADNet. We re-train A-NCSH[5] for 100 epochs
on our ArtImage training dataset. We use SGD optimizer with a initial learning rate 0.001
with momentum 0.9. We use step learning rate decay strategy with decay factor 0.7 at the
20-th, 40-th, 60-th, 80-th epoch, which is also adopted in [5]. We follow [5] for all the other
hyper-parameters and training settings.

2.4 Siamese Network

For the Siamese Network used as baseline in the retrieval experiment, we use a two-layer
MLP built upon PointNet++[5] backbone to predict a shape vector for each instance, which
is similar to the shape branch of our OMADNet. The dimension of shape vector is the
same as the dimension of shape parameters B used in our OMAD, which is 10 by default.
We randomly sample 1024 points from point cloud generated from depth images as input.
During training, we randomly construct positive sample pairs and negative sample pairs from
the training set of Artlmage. Each positive sample pair consists of two depth images of the
same instance with different poses and viewpoints. Each negative sample pair consists of two
depth images of two different instances with different poses and viewpoints. We make sure
that the number of positive samples and negative samples are balanced during training. We
use contrastive loss defined in Equation 1 proposed by [3] to make the predicted shape vector
remain consistent in the same instance and increase distances between different instances.

L (W, Y,f(hfg) —(1 —Y)% (Dw)> + (Y)% {max (0,m — Dy)}> (1)

Here Dy denotes the Euclidean distance of the hidden vector of the two samples X 1 and)?2, Y
is the label which indicates whether this sample pair is negative, and m is a hyper-parameter.
We set m = 1.0 after grid search. During testing, we use the Euclidean distance between
predicted shape vectors as similarity metric.

Citation
Citation
{Loshchilov and Hutter} 2016

Citation
Citation
{Loshchilov and Hutter} 2016

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017{}

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Hadsell, Chopra, and LeCun} 2006

3 Additional Experiments

3.1 Effects of keypoint numbers

Table 1 shows the effects of keypoint numbers. We can see that the performance becomes
worser on most categories when the keypoint number is either very small or very large.
Intuitively, we believe that too few keypoints makes the prediction results more sensitive to
outliers, which can harm the performance. When using too many keypoints, the keypoint
target locations predicted by keypoint branch are less accurate. We believe that it is hard
for the neural network to distinguish between different keypoints when the keypoints are too
dense, which harms the refined results after optimization.

Table 1: The effects of keypoint numbers.

. Joint State Joint Parameter
Category | #Keypoints per Part error angle error | | distance error |
4 8.7° 34° 0.056
Laptop 8 4.3° 3.6° 0.034
12 3.3° 3.7° 0.033
16 3.0° 4.0° 0.034
4 5.1°,5.7° 3.8°,4.2° 0.062, 0.052
Eyeglasses 8 4.9°,5.2° 4.2°,4.6° 0.050, 0.054
12 5.2°,5.3° 4.8°,5.2° 0.046, 0.044
16 6.0°, 6.0° 5.0°,5.5° 0.054, 0.049
4 10.6° 4.7° 0.119
. 8 5.9° 4.8° 0.093
Dishwasher 12 37 4.6° 0.091
16 4.0° 4.7° 0.082
4 5.2° 6.2° 0.071
Scissors 8 4.0° 2.2° 0.044
12 3.2° 2.7° 0.050
16 3.5° 2.3° 0.059
4 0.13,0.13,0.10 | 3.9°,3.9°,3.9° -
Drawer 8 0.11, 0.11, 0.09 | 3.2°,3.2°,3.2°
12 0.11,0.12,0.10 | 4.7°,4.7°,4.7°
16 0.11,0.11,0.10 | 4.7°,4.7°,4.7°

3.2 Effects of shape parameters 8

Table 2 shows the results of using different dimension number(also the number of linear
shape basis) of shape parameters . Optimization-based estimator is used as default. We can
see that the performance becomes worser on most categories when the dimension number
of B is too small or too large. We believe that very small dimension number of B can limit
the ability of modeling complex geometric variations, and large dimension number can raise
the risk of overfitting. Thus, an appropriate dimension number of B(i.e. 10) is necessary for
good performance.

3.3 Results on Real Images

To evaluate the generalization ability of our method on real images, we collect a real RGB-
D dataset on Franka Emika Panda robot arm. This dataset contains 25369 RGB-D images
captured by RealSense D435 under different joint states of robot arm and camera viewpoints.
We select 18834 images for training and 6535 images for testing. We calibrate the pose of the
base part of robot arm for each camera viewpoint, and obtain robot joint states automatically.
Since the joint parameters in canonical space can be obtained from the URDF model, the 6D

Table 2: The effects of dimension number of f8.

Category 8| Joint State Joint Parameter
error |, angle error | | distance error |
5 3.8° 3.7° 0.037
Laptop 10 3.3° 3.7° 0.033
15 4.3° 3.5° 0.038
5 5.0°,5.8° 4.4°,4.9° 0.048, 0.048
Eyeglasses | 10 4.9°,5.2° 4.2°,4.6° 0.046, 0.044
15 5.4°,5.3° 4.6°,5.2° 0.059, 0.050
5 4.9° 5.2° 0.088
Dishwasher | 10 3.7° 4.6° 0.091
15 6.2° 4.8° 0.085
5 4.4° 2.9° 0.045
Scissors 10 3.2° 2.7° 0.050
15 3.6° 2.2° 0.046
5 |0.11,0.11,0.10 | 3.0°,3.0°, 3.0° -
Drawer 10 | 0.11,0.11, 0.09 | 3.2°,3.2°,3.2° -
15 | 0.12,0.11,0.10 | 3.4°,3.4°,3.4° -

pose of each part of the robot arm in camera space can be calculated with base part pose and
joint states. We use Unity[1] to imitate the parameters of the real physical camera and set
the 6D pose of the virtual robot URDF model to be the same with the real robot. In this way,
part segmentation masks of robot arm on real images can be generated from Unity, which
are necessary for methods like A-NCSH[5].

We make some modifications for our method to adapt to instance-level articulated pose
estimation task. We use part-level Farthest Point Sampling to generate keypoints which serve
as the shape basis of OMAD. The total keypoint number is 84 (12 keypoints for each part).
We sample 1024 points from the point cloud generated from the depth image as input. The
pose estimation results on our real dataset are shown in Table 3 and Figure 2. We achieve
robust and more accurate results on joint distance error compared to A-NCSH[5], and obtain
comparable results on joint state error and joint angle error. Generally, the errors of the last
few joints are larger due to pose calibration noise of the base part. This experiment indicates
that our method has the ability to generalize to real depth images on instance-level task.

Table 3: Performance comparison for instance-level articulated pose estimation on our real
image dataset. OMAD(refine) represents the refined results with our optimizer. All the six

joints are revolute joints.

Joint State Joint Parameter

error(®) | angle error(°) | distance error(m) |
A-NCSHI[5] 6.4°, 6.5, 8.6°, 6.6°, 8.8°, 11.6° 1.7°,6.7°,6.7°,7.3°, 6.2°, 8.0° | 0.008, 0.036, 0.056, 0.045, 0.083, 0.228

OMAD(refine) | 9.9°, 6.2°, 10.1°, 5.0°, 14.8°, 16.4° | 3.1°,9.8°, 6.1°, 6.6°, 6.5°, 17.0° | 0.021, 0.010, 0.017, 0.021, 0.019, 0.028

Method

3.4 Part-based Results

We also report experiment results in Table 4 on part-based metrics such as rotation error and
translation error. Our OMAD(refine) achieve some better results compared to A-NCSH[5]
on eyeglasses and drawer. A-NCSH performs slightly better on other categories, because
they adopt dense point-level optimization with RANSAC, while our method only uses sparse
keypoints for optimization. However, our method achieves faster inference speed and bet-
ter results on joint state error and joint parameter error(See the experiment results in main

paper).

Citation
Citation
{uni}

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Figure 2: Visualization results of OMADNet on real depth images for instance-level articu-
lated pose estimation task. Keypoint indexes are represented by colors. Joint parameters are
represented by red arrows.

Table 4: Performance comparison on Artlmage dataset with part-based metrics.
OMAD(initial) represents the initial joint state and joint parameters predicted by OMAD-
Net, and OMAD(refine) represents the refined results with our optimizer.

Per-part Metrics
Category Method rotation error(®) | : translation error(m) |
A-NCSH][5] 53,34 0.054, 0.043
Laptop OMAD(initial) 24.6,25.4 0.218, 0.289
OMAD(refine) 54,43 0.062, 0.061
A-NCSH][5] 3.7,22.3,232 0.049, 0.313, 0.324
Eyeglasses | OMAD(initial) 23.7,32.0,31.6 0.211, 0.387, 0.385
OMAD(refine) 49,7575 0.062, 0.103, 0.104
A-NCSH][5] 4.0,4.8 0.059, 0.123
Dishwasher | OMAD(initial) 19.3,26.8 0.220, 0.339
OMAD(refine) 6.0,6.2 0.104, 0.142
A-NCSH][5] 2.0,2.9 0.035, 0.025
Scissors OMAD(initial) 24.8,25.0 0.291, 0.297
OMAD(refine) 39,34 0.048, 0.039
A-NCSH][5] 2.8,3.5,39,.29 0.045, 0.155, 0.157, 0.075
Drawer OMAD(initial) | 19.1,19.1, 19.1, 19.1 | 0.268, 0.342, 0.339, 0.339
OMAD(refine) 4.4,44,44,44 0.111, 0.144, 0.143, 0.115

4 OMAD

4.1 Deformation Function
In the main paper, deformation function is defined in Eq. 2 and Eq. 3:

pi=Gi(®',0)p; 2

JEA(K)

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Citation
Citation
{Li, Wang, Yi, Guibas, Abbott, and Song} 2020

Here Fj(d>’j, @) is the relative 4 x 4 transformation matrix caused by the reference joint of
part j. We will explain the definition of Fj(d>’j, ®,) for three types of joints separately.

1. Free Joint F;(®’,0;) is defined in Eq. 4:

“

R t
ris0)-] & 1]

where R € SO®t € R3. Here {R, t} are derived from joint state ©;.

2. Revolute Joint Fj(®';,®;) is the relative 4 x 4 transformation matrix that can make a
vector n rotate around a joint axis <I>’j for 6 € ©; degrees.

3. Prismatic Joint Fj((IJ;-, @) is the relative 4 x 4 transformation matrix that can make
a vector n translate distance 8 € ®; along joint direction u € ©;.

5 OMAD-PriorNet

Based on the method proposed by Fernandez et al.[2], we propose OMAD-PriorNet which
can learn OMAD prior in an unsupervised manner. The input of OMAD-PriorNet is com-
plete point cloud X’ of articulated objects in canonical space, and the output are instance-
specific parameters including shape parameters B, keypoints P’ and joint parameters @' in
canonical space. The parameters {B,I'} of shape function S(B;B) and joint function J(f;I')
will be treated as shared network parameters of OMAD-PriorNet for each category, and they
will be updated during training process. After the training, these parameters will be fixed as
category-specific OMAD prior.

5.1 Structure Details

Our OMAD-PriorNet consists of two branches, namely node branch and shape branch. For
categories with symmetry, we make some modifications to increase the quality of the learned
keypoints.

1. Node branch. This branch will output potential unorderd keypoint candicates(also
called nodes) which can be represented by N’ = {n|,n} ... ,n},}, where M is the
number of nodes. The number of nodes is equal to the number of order keypoints.
Similar to [2], we also adopt Farthest Point Sampling to generate initial nodes on
object point cloud, and use KNN and MLP to generate offsets relative to these initial
nodes. Different from [2], we assign part labels for these nodes, and the Farthest Point
Sampling process is performed at part-level.

2. Shape branch. This branch will output instance-specific shape parameters B, and
generate ordered keypoints P’ and joint parameters @’ in canonical space based on
shape function P’ = S(B;B) and joint function ® = J(B;I’). This branch uses a
PointNet[7]-like network to extract global feature, and use MLP to directly regress
shape parameters . Different from [2], the shape basis B in shape function is part-
level, which means the final generated ordered keypoints P’ are also part-level.

Citation
Citation
{Fernandez-Labrador, Chhatkuli, Paudel, Guerrero, Demonceaux, and Gool} 2020

Citation
Citation
{Fernandez-Labrador, Chhatkuli, Paudel, Guerrero, Demonceaux, and Gool} 2020

Citation
Citation
{Fernandez-Labrador, Chhatkuli, Paudel, Guerrero, Demonceaux, and Gool} 2020

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Fernandez-Labrador, Chhatkuli, Paudel, Guerrero, Demonceaux, and Gool} 2020

3. Symmetry. In practive, we find many categories of articulated objects are symmet-
ric. To better utilize such instance-wise symmetry, we adopt similar techniques in [2]
which make all the shape basis B are symmetric about a certain plane. Specifically,
we use such symmetry on categories including laptop, dishwasher and drawer.

5.2 Loss Function

We will introduce all the loss functions for the unsupervised training of OMAD-PriorNet.

1. Chamfer loss. We introduce a part-level chamfer loss Lps.

cht—*z Z /rmn || —pJH2+ Z mln Hn —p]-||2) (5)

)/
=1 njeNy P

where ./\/(’k) represents the node set that belong to part k, which are predicted by the

node branch of OMAD-PriorNet. P’(x) Tepresents the ordered keypoint set that belong
to part k, which are predicted by the shape branch of OMAD-PriorNet. This chamfer
loss will make the distance between unordered nodes and order keypoints as small as
possible, thus making the predicted keypoints have semantic consistency in category.

2. Coverage loss. The chamfer loss mentioned above can not make sure that the pre-
dicted keypoints can capture object shape geometry. Thus we need to introduce a
part-level coverage loss Lgoy-

Leoy = E};SmoothLl(bound(/\/() bound (X) (6)

where bound (/\/{ k>) represents the corner points of 3D bounding box that covers all the
unordered nodes _/\f(k)/ for k-th part, and bound (X’(k)) represents the corner points of

3D bounding box that covers all the point cloud X zk) for k-th part. This coverage loss
can make the predicted unordered nodes coverage each part of the articulated objects.

3. Surface loss. We want the predicted keypoints to be close to the object surface in
order to capture object surface geometry. We introduce a part-level surface 1oss Lgy,s.

1 K
b= X ¥ i -], o

1n€N(/)x eX’

where ./\/(’ x) Tepresents the unordered nodes that belong to k-th part, and X’ represents
complete object point cloud in canonical space.

4. Regularization loss. In order to make the predicted shape parameters B have better
generalization ability, we introduce a regularization 108 Lyeg.

Lieg = ||BII3 (8)

Citation
Citation
{Fernandez-Labrador, Chhatkuli, Paudel, Guerrero, Demonceaux, and Gool} 2020

5. Separation loss. In order to prevent the collapsing of keypoints, we introduce a part-
level separation loss Lgep.

K

Lo = X L L o (08-[m-n}) o
k=1 nGN(k)nJGN NS

where ./\/(’) represents unordered nodes that belong to k-th part, |./\/<’ k)| represents the

number of nodes that belong to k-th part and hyper-parameter o is the distance thresh-

old. When the distance between any two nodes is less than &, the result will be pun-

ished. This separation loss will prevent multiple nodes collaps to the same location

but not keep these nodes too far away from each other.

6. Joint loss. We introduce joint loss defiend in Eq. 10, Eq. 11 and Eq. 12 to supervise
all the joint parameters & = [@7,..., %], ¢} = (u,q}) in canonical space. Here ¢}
represents the joint parameters of k-th joint, u represents the axis direction of -th
joint and g represents pivot point location of k-th joint. These joint parameters are
predicted by joint function @ = J(B;T) in the shape branch of OMAD-PriorNet.

Ljoint = Ajoinleointfdir + Ljoint _loc (10)
K
u u
Lioint_dir = = ot (1n
o K;Hukll o
u, x u*
Lioint_loc = 10— (g, — 41| (12)
joint_loc ZK l]l(r) ; Hukxu ” k

In Eq. 10, Ljoint_dir represents joint direction 1oss, Liin_loc represents joint location
loss and hyper-parameter Ajoim is set to 0.5 by default. In Eq. 11, Ljoine_gir is used
to measure the angle error between predicted joint axis direction u, and ground-truth
joint axis direction u . In Eq. 12, Ligint_loc s used to measure the distance between
predicted joint axis and ground-truth joint axis, and]lf) indicates whether the k-th
joint is a revolute joint(prismatic joint does not need joint location).

References

[1] Unity game engine. http://www.unity.com/.

[2] Clara Fernandez-Labrador, Ajad Chhatkuli, Danda Paudel, Jose Guerrero, Cédric De-
monceaux, and Luc Gool. Unsupervised learning of category-specific symmetric 3d
keypoints from point sets. In I6TH EUROPEAN CONFERENCE ON COMPUTER VI-
SION, ECCV 2020. Springer, 2020.

[3] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning
an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pages 1735-1742. IEEE, 2006.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

http://www.unity.com/

[5] Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn Abbott, and Shuran Song.
Category-level articulated object pose estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 3706-3715, 2020.

[6] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[7] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652-660, 2017.

[8] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413,2017.

[9] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua
Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interac-
tive environment. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11097-11107, 2020.

