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In this supplementary material we provide more implementation details of the proposed
quantised transforming auto-encoders (Section 1). We also include additional qualitative
results on the RGBD-Object dataset [2] with comparison to alternative solutions (Section 2),
qualitative performance with the additive-space solution (Section 3), qualitative performance
for the out-of-distribution (compositional) extrapolation (Section 4), additional qualitative
performance on the datasets mentioned in the main paper (Section 5), and also some dynamic
results (Section 6) as attached videos.
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Figure 1: (a) The basic framework of the proposed approach; (b) Illustration of the discre-
tised rolling embeddings. For simplicity, here the rolling embeddings are illustrated by a
3-dimensional tensor, while in practice they can be of higher dimensions.

1 Network Architecture Details
In this section, we provide more details of the network design and the pipeline of the pro-
posed approaches. The network architecture of the proposed Quantised Transforming Auto-
Encoders (QTAE) is shown in Figure 1, from which we can see that the input image is
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Figure 2: Illustration of the efficient additive-space shifting, for large transformation spaces.
The quantity marked with an asterisk indicates the additive product combination.

re-rendered according to the transformations that apply to the embeddings (orange block in
Figure 1 (a)). The overall architecture follows an encoder-decoder fashion, and the network
is trained with the reconstruction objective. We use simple convolutional-deconvolutional
auto-encoders with several convolutional blocks in the encoder, consisting of a 3×3 or 5×5
convolution, max-pooling (with stride 2) and ReLU activation. The number of channels is
16-32-64-64. As for the deconvolutional layers (transposed convolutions), they follow the
same layout but without max-pooling.

The rolling embeddings are illustrated in Figure 1 (b), where we can see that the input
embedding (orange block) is first discretised to an orthogonal representation followed by
the rolling operations (which can be interpreted as a tensor product space of the dimensions
corresponding to the different transformations). Note that for simplicity, the discretised rep-
resentation is showcased as three-dimensional, while it can be higher dimensional depending
on the transformation space. The rolled (or shifted) embeddings are recovered to the original
three-dimensional feature space, and finally fed into the decoder.

As mentioned in the main paper, in order to address the memory consumption issue cased
by the increasing transformation space, we propose an efficient combination of transforma-
tions in an additive tensor space (as opposed a the tensor product space). An illustration
of this efficient solution is shown in Figure 2, where the input embedding is discretised by
unstacking independent matrices, each corresponding to a different transformation. The em-
beddings after rolling/shifting are stacked to the original feature dimension and fed back to
the decoder to re-render the result.

2 Qualitative Performance on RGBD-Object

Due to the space limitations, we did not include qualitative performance on the RGBD-
Object [2] in the main paper. Here, we show a qualitative comparison between our approach
and other alternative solutions in Figure 3. From the results we can see that our method
performs much better than the compared methods, though the re-rendered results for all the
methods are less detailed than on other datasets. This is mainly cause by the low diversity
of available views for each object in the RGBD-Object dataset and the complexity of the
appearance. In addition, as mentioned in the main paper, the object instances in the re-
rendered test images are never seen in the training set, though the same category might
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Figure 3: Qualitative performance on the RGBD-Object dataset, with comparison to state-
of-the-art methods. The Source images are re-rendered with the given angles in the second
row. Note that this dataset has very few distinct object instances (300), so it is a difficult task
for deep networks to fit it.

appear. This further increases the difficulty of this challenging task, as accurate filters with
the particular patterns of these test-set images cannot be learned by the decoder.

3 Qualitative Performance of Additive vs. Product-space

In addition to the quantitative results presented in Table 2 in the main paper, here we show-
case the qualitative performance of the efficient additive-space solution, as shown in Fig-
ure 4. We can see that despite having much fewer parameters and memory consumption, the
efficient solution does not result in a significant performance drop visually, and even shows
better quality for some cases (e.g. the third last sample) in the 3D Shapes dataset [1].

4 Qualitative Performance for Out-of-distribution
Extrapolation

In this section, we show the qualitative performance of our approach on compositionality and
out-of-distribution extrapolation, as described in Section 4.4 in the main paper. Following the
main paper, here we show the three concepts (i.e. pairs of attributes) that were never observed
during the network training: blue sphere, large cylinder, and cube on red wall, in Figure 5.
We can see that although the above-mentioned concepts are never seen by the model during
training, our approach is able to compose and extrapolate outside the training distribution
and the re-rendered results are of good quality. This again validates the effectiveness of the
proposed method.
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Figure 4: Qualitative performance comparison between the product-space, and the additive-
space (more efficient).

5 Additional Qualitative Results
Here in this supplementary material, we provide additional qualitative results in Figure 6,
Figure 7, Figure 8, and Figure 9, for the datasets used in the main paper.

6 Dynamic Video Performance
In addition to the results shown in the main paper, in the supplementary material we further
present dynamic results in videos showing more transitions. Please refer to the video files
“NORB.m4v” and “3DShape.m4v” for more details.
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Figure 5: Qualitative performance for the out-of-distribution extrapolation. From top to
bottom are the different settings of unseen concepts: blue sphere, large cylinder, and cube on
red wall.
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Figure 6: Additional results for the proposed approach on MNIST [3] data.
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Figure 7: Additional results for the proposed approach on SmallNORB [4] data.
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Figure 8: Additional results for the proposed approach on 3DShape [1] data.
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Figure 9: Additional results for the proposed approach on 3DShape [1] data when consider-
ing the colour transformations.
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