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1 Additional experiments on the segmentation task
For the segmentation task, Table 1 shows the experiment results on the validation set evaluated
by the online evaluation server. The result on the validation set is very similar to that on the
training set.

Mean (std) Enhancing Tumor Whole Tumor Tumor Core

Data ratio 0.2 0.3 0.5 0.7 0.2 0.3 0.5 0.7 0.2 0.3 0.5 0.7

Backbone 71.22 75.85 70.15 76.48 85.52 88.07 88.42 88.71 76.23 78.56 82.63 81.29
+gaze∗ 74.37 78.10 77.85 77.06 84.14 87.09 87.71 86.22 79.23 82.19 81.59 82.30

ours 75.48 76.59 78.27 79.73 85.68 88.82 89.13 89.43 77.68 83.07 81.71 83.32
ours+surv 73.20 76.91 79.72 80.07 86.12 88.52 89.36 89.64 80.07 83.39 82.92 83.87

Table 1: Results on validation set using part of training data (Dice score %)

Table 2 shows the model performances on the validation set using full training set of
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BraTS 2020 dataset. In this experiment, we first initialize the training using only the training
data with gaze for 20 epochs, and then use the full training set for training. We do not apply
loss on SAN when it comes to the data sample without collected gaze. We can see similar
performance of backbone and +gaze∗, and also performance improvement is gained by using
the expert’s gaze information during training.

Dice score (%) Enhancing Tumor Whole Tumor Tumor Core
Backbone 79.20 88.50 84.24

+gaze∗ 79.88 89.71 84.11
ours 79.67 90.16 85.03

ours+surv 80.60 89.04 84.29
Table 2: Results on validation set using full training data.

2 Model parameters and computational complexity
In Table 3, we show the number of parameters and computational complexity of our framework
under the 3D tumor segmentation task. Note here the difference between the model parameters
and computational complexity of ours and ours+surv frameworks are negligible, so we
combine them and show in Table 3 as "ours". From the table we can find that when compared
with the UNet alone, our proposed SAN and Auxiliary Attention Block only add very limited
amount of model parameters and computational complexity.

Number of parameters Computational cost
Backbone 19.17 M 777.24 GMac

Backbone + Ours 21.45 M 779.36 GMac
Table 3: Number of parameters and computational cost of each model

3 Gaze data collection process
We hire two medical experts (one with 4 years and the other with 2 years professional
experience) and two non-experts for gaze data collection. The device we use for measuring
gaze position is the EyeTribe eye-tracker. We first calibrate the eye-tracker and ensure the
calibration quality is above “moderate" level (angular error ≤ 1◦). We use the log generated
from the SDK provided by the EyeTribe for getting the gaze tracking data. The user can pause
the screening at any time, however after resuming the calibration is done again to preserve the
gaze measurement accuracy.

The helper GUI for gaze collection is placed in a fixed position of the screen, and the
timestamp when the human begins to see one frame and ends with this frame is automatically
recorded by the GUI. The GUI also records which image the person is looking at, thus by
processing the gaze tracking log and the GUI log, we can locate the gaze positions on every
image. We take only the gaze positions inside the images and ignore all other gaze points.
As for preprocessing, for all the gaze data of one sample recorded by the same person in the
same session, we first classify each data point into fixation and saccade using the code from
[3]. All the data labeled as "saccade" is discarded.
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Name Description Example value
“Person” the patient ID 100
“Mode” the modality 1 (t1ce)
“File” the slice 10

“Time” timestamp when the human begins to see this image 151815.169
Table 4: Field names, description and example value in the GUI generated log file.

Mean (std) Atelectasis Cardiomegaly Pleural Effusion

Data ratio 0.7 0.5 0.7 0.5 0.7 0.5

EfficientNet-b0 61.06 52.30 57.72 54.47 61.55 50.94
MobileNet-v2 60.37 55.41 54.32 45.39 60.84 59.99

ResNet-18 54.41 44.41 52.07 47.49 58.92 59.06
Table 5: Experiment with different backbones of the classification task.

4 Experiments with different backbones of classification
task

Table 5 shows the quantitative results of the performance of different backbones (Efficient-
Net [5], MobileNet-v2 [2], ResNet-18 [1]) in our framework. Among the three backbones,
EfficientNet and MobileNet-v2 perform better than ResNet-18, which is reasonable since the
amount of training data is limited, and ResNet is more complicated and requires more data
for training when compared with the other two backbones.

5 Details for experiment of chest X-ray classification
We train and validate the performance of our proposed framework on the MIMIC-CXR-gaze
dataset [4]. Among all the 1083 images with gaze, we use 200 images for validation and other
images form the full training set. For the experiments using part of training data, the unused
part of training data is added into the validation set. For training the model, we use the Adam
optimizer with learning rate 0.001 and train for 100 epochs. We take the average AUROC
score of the best 30 models in terms of validation loss.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[2] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[3] Yifei Huang, Minjie Cai, Zhenqiang Li, and Yoichi Sato. Predicting gaze in egocen-
tric video by learning task-dependent attention transition. In European Conference on
Computer Vision, pages 754–769, 2018.

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Karargyris, Kashyap, Lourentzou, Wu, Sharma, Tong, Abedin, Beymer, Mukherjee, Krupinski, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021



4 HUANG ET AL.: LEVERAGING HUMAN SELECTIVE ATTENTION

[4] Alexandros Karargyris, Satyananda Kashyap, Ismini Lourentzou, Joy T Wu, Arjun
Sharma, Matthew Tong, Shafiq Abedin, David Beymer, Vandana Mukherjee, Elizabeth A
Krupinski, et al. Creation and validation of a chest x-ray dataset with eye-tracking and
report dictation for ai development. Scientific data, 8(1):1–18, 2021.

[5] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114,
2019.


