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1 Mathematical Definition of Error Metrics

In this section, we provide the mathematical definitions of the evaluation metrics used in
Sec. 4 in the main paper. These are standard metrics used in the literature for evaluating
depth estimation performance (e.g., in [1, 2]). For each image, we denote the ground-truth
depth map by d, the predicted depth map by d, the set of valid pixels as Q where the ground-
truth depth values are available, and Ng is the number of valid pixels. The errors are then
computed as follows for each image:

Absolute Relative Error (Abs Rel): This metric computes the average per-pixel absolute
error between the predicted and GT depth values normalized by the GT depth value. The
averaging is over the valid pixels in an image:
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Squared Relative Error (Sq Rel): This metric computes the average per-pixel squared
error between the predicted and GT depth values normalized by the GT depth value. The
averaging is over the valid pixels in an image:
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Root Mean Squared Error (RMSE): This metric computes the standard RMSE between
the predicted and GT depth values:
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RMSE of Log of Depth Value (RMSEj,qg): This metric computes the standard RMSE
between the log of the predicted depth values and the log of the GT depth values:
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Classification Metrics (8;, 6;, 83): This set of metrics quantify the closeness between the
predicted and GT depth values by measuring their ratio. It computes the percentage of pixels
whose ratios are within a certain range from 1. More specifically, we first define:
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which is the set of valid pixels whose prediction-GT and GT-prediction ratios are within
1.25%. The metrics are then given as follows, with 1, being the indicator function:
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2 Additional Visual Comparisons with SOTA

In this section, we provide additional visualization examples based on KITTI test data, and
compare with the state-of-the-art (SOTA) methods of Monodepth2 [1] and HR-Depth [2].
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Figure 1: Sample depth estimation results. In each comparison, the second, third, and fourth rows
show the estimated depth maps generated by Monodepth2 [1], HR-Depth [2], and our proposed X-
Distill approach, respectively. The green boxes indicate sample regions where our method considerably
improves the estimation quality.
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Figure 2: Sample depth estimation results. In each comparison, the second, third, and fourth rows
show the estimated depth maps generated by Monodepth2 [1], HR-Depth [2], and our proposed X-
Distill approach, respectively. The green boxes indicate sample regions where our method considerably
improves the estimation quality.
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