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1 Introduction of Contourlet Transform
The contourlet transform (CT) [5] is an efficient and effective technique for geometric infor-
mation analysis which can achieve better representation in both locality and directionality.
Compared to the wavelet transform (WT), the CT can represent the features in a sparser way
because it provides better spatial locality, anisotropy, and directionality properties while the
WT only extracts vertical and horizontal details. The comparison of the WT and the CT is
shown in Figure 1. The overview of the CT is presented in Figure 2(a). It mainly consists
of two operations: the Laplacian pyramid (LP) [2] and directional filter banks (DFB) [1].
Given an image, first, the LP filter decomposes it into the semantic subband (SS) and a high-
frequency subband. Then, the high-frequency subband is further decomposed into several
subspaces with 2k direction via directional filters where k is a positive integer. We term these
subspaces multi-direction subbands (MSs). The illustration of multi-direction subbands is
shown in Figure 2(b). Note that MSs mainly consist of residual rain streaks and and tex-
tural information. For these components, the direction is very important. Therefore, the
contourlet decompose the high-frequency subband into several subspaces according to di-
rections to capture the edge and textural features with a variety of orientaions. By the CT,
multiresolution and multidirection decomposition can be achieved efficiently and abundant
directional features can be extracted.
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(a) (b)

Figure 1: Using (a) the wavelet and (b) the contourlet to represent a bent curve. Note
that a sparser representation can be achieved by the contourlet.

(a) (b)

Figure 2: Illustration of the Contourlet Transformation (CT). (a) The CT with the hi-
erarchical architecture. Note that the green dash box denotes the CT operation. (b) The
multi-direction property of the CT. The eight-direction case is illustrated (i.e., k = 3).

2 Detail of the proposed network architecture
As we mentioned in the manuscript, the proposed ContourletNet consists of multi-direction
subband recovery network (MSRN) and the semantic subband recovery network (SSRN). In
each sub-network, to improve the performance of feature extraction and reconstruction, we
propose a novel network architecture called the contourlet predictor (CP) shown in Figure 3.
Initially, the input is concatenated with the proposed aggregate contourlet component Gi
which is defined as

Gi = σ(I)⊕σ(SS1)⊕·· ·⊕σ(SSi−1), (1)

where Gi denotes the aggregate contourlet component at the ith level, ⊕ presents the con-
catenate operation, I is the rain image, and SSi is the SS component at level i, and σ is the
multi-pooling architecture [4]. The idea of (1) is has been illustrated in the manuscript. For
the encoder part of the CP, the Res2Net [7] is adopted to perform feature extraction. For the
decoder part, the techniques of multi-deconvolution [3], shortcut, global convolution (GCN)
and boundary refinement (BR) [10] are applied. The recovery of texture and structure is
crucial since rain may deteriorate these contents. According to [4] multi-deconvolution is
helpful for reconstructing the structural information while the GCN and BR can enhance the
edge detail. Both the MSRN and the SSRN adopt the architecture of the CP as the backbone.
However, the target output of MSRN is the residual difference while that of SSRN is the
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Figure 3: The architecture of the contourlet predictor (CP).

ground truth of SS, respectively. Besides, the filter depth is wider and more parallel kernels
are connected in the SSRN because SS components require more complicated features and
semantic information than MS components in the recovered process.

About the multi-level discriminator, we adopt the Res2Net [7] as the feature extractor
for two input components (i.e., recovered image and multi-level SS components). Then, we
concatenate these feature maps and leverage a fully connected layer to evaluate the quality
of recovered result.

3 More Experimental Results
We present more results on real-world and synthetic datasets under the moderate rain and
heavy rain scenarios. For the moderate rain, we adopt the Rain100H and Rain100L datasets
proposed in [15], and Rain800 [16] for training and evaluation. Rain100H contains 1800
synthetic images for training and 100 synthetic images for testing. Rain100L contains 200
synthetic images for training and 100 synthetic images for testing. Rain800 contains 700
synthetic images for training and 100 synthetic images for testing. For the heavy rain, we
adopt the heavy rain dataset proposed in [9], which contains 9000 synthetic images with rain
streaks and the veiling effect. 7000 images are applied for training and 2000 images are
applied for testing.

3.1 Effectiveness of Contourlet Transformation.
To prove the effectiveness of the CT in rain scenarios, we apply several existing feature
extraction techniques for comparison: vanilla convolution operation with 3×3 kernel size
(VConv); multi-scale convolution kernel (Mconv) [12]; Laplacian pyramid (LP) [6]; high-
low frequency decomposition [9]; DWT [13]. We apply these rain streaks extraction tech-
niques on the proposed network and evaluate the performance on real-world scenario. As
shown in Figure 4, one can see that, the proposed method can achieve better performance
on rain streak removal compared with other extraction techniques, and generate more decent
result.

3.2 Effectiveness of the Multi-level Discriminator and the Feedback
Error Map.

To further prove the effectiveness of the proposed multi-level discriminator (MD) and the
feedback error map (FEM), we shown a visual comparison in Figure 5. One can see that,
with the proposed MD, the reconstructed subbands have better resolution and recovered
quality. Moreover, the MD can suppress the residual rain streaks and achieve better rain
removal results.
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(a) Input (b) VConv (c) MConv (d) HL

(e) LP (f) Wavelet (g) Contourlet

Figure 4: Visual comparison of different decomposition methods on the real-world
scene.

Figure 5: Effectiveness of the multi-level subband discriminator and the feedback error
map. Note that ’Original’ indicates the image without CT decomposition.

Table 1: Computational resource evaluation for the ContourletNet and existing algo-
rithms. (Image size: 640 × 480)

Method MSPFN [8] RCDNet [14] BRN [11] HRGAN [9] Ours
Time 0.58 1.50 0.41 0.30 0.11

Parameters 15,823,424 3,166,355 412,518 40,627,038 9,911,603
FLOPs 2.84×1012 9.09×1011 9.23×1011 8.68×1011 8.94×1010

3.3 More Recovered Results

Heavy Rain Scenario. In Figure 6 and Figure 7, we present more rain removal results on the
synthetic heavy rain and real-world datasets for the heavy rain scenario. The results indicate
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that the proposed method can achieve better reconstruction performance compared to other
existing methods.
Moderate Rain Scenario. In this subsection, we present more rain removal results on the
synthetic dataset to prove the effectiveness of the proposed method. The comparison is
shown in Figure 8. From this comparison, one can notice that, the proposed method can
remove both rain streaks and the veiling effect and retain more detail information qualita-
tively. Furthermore, the proposed method can achieve the best quantitative evaluation in
terms of the PSNR, the SSIM, and the CIEDE 2000 compared to other methods. Moreover,
we show more recovered results in the real-world dataset in Figure 9. Compared to other
methods, the proposed method can remove rain streaks even more clearly and retain more
detail information.

3.4 Computational Resource Evaluation
Table 1 presents the computational resource evaluation. It shows that the proposed method
can achieve the favorable performance but with less FLOPs and time consumption.

3.5 Applications for Object Detection and Vehicle Plate Identification
Moreover, we show that the proposed method can benefit the performance of object detec-
tion and vehicle plate identification on the Google API service in Figure 10 and Figure 11,
respectively. Note that the license plate number can be validly identified ONLY in the image
recovered by the proposed method. Furthermore, the results recovered by our method can
detect the object accurately compared to other methods. It is due to that the proposed method
can effectively remove rain streaks and well reconstruct the detail.
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(a)

(b)

(c)

Figure 6: Visual comparison on the heavy rain dataset.
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(a)

(b)

(c)

Figure 7: Comparison of heavy rain removal results on real-world scenarios with three
existing strategies.
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(a)

(b)

(c)

Figure 8: Comparison of moderate rain removal results on synthetic scenarios.
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(a)

(b)

(c)

Figure 9: Comparison of moderate rain removal results on real-world scenarios.
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(a) Input (b) HRGAN [9] (c) Ours

Figure 10: Comparison of the license plate number identification results by the Google
API after heavy rain removal. One can see that, only the license plate in the image recov-
ered by the proposed method can be identified correctly (i.e., 4856H), which indicates that
the proposed method can potentially benefit the applications of high-level vision.

(a) Input (b) HRGAN [9] (c) Ours

Figure 11: Heavy Rain Removal results for a realistic photograph by the HRGAN [9] and
the proposed method with the corresponding Object Detection results by the Google Vision
API.
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